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1 Introduction

Waves and particles are the main constituents of the world but waves are our main method
of communication and detection, whether biological or technological. Historically, the study
of waves has been separated into the stationary (standing wave) and nonstationary (pulse)
case. Pulses are of fundamental consideration in radar, sonar, acoustics, fiber optics, among
many other areas. A pulse has been called by many terms: transient, wave group, progressive
wave, wave packet, nonrecurrent wave, traveling wave, non-periodic wave have all been used
to describe basically the same thing. Because one of the main properties of pulse propagation
is dispersion, that is, the fact that different frequencies propagate with different speeds,
time-frequency analysis offers an ideal approach toward their study [3, 4]. Over the past two
decades or so there has been substantial progress in the development of new methods for
analyzing a signal jointly in time and frequency and this has led to new results in the basic
nature of pulses.

In this report we deal with pulses and one of the main aims is to give a simple view
of pulse propagation, an approach that we call “a local view”which makes pulses easier
to understand and deal with intuitively. We have devised a new method to study pulse
propagation in dispersive media and using this approach we have derived exact expressions
for many physical quantities such as the spreading of a pulse, the conditions as to when
a pulse contracts, the contraction time, and other important physical quantities. We also
consider higher order dispersion, which is when there are terms on the dispersion relation
that are higher than quadratic, a concept that will be explained subsequently.

We list the main ideas, results, and methods presented in this report:

1. We describe a method to calculate exact moments of a propagating pulse without

having to calculate the pulse itself.

2. We discuss a local view of pulse propagation that explains in simple terms many of the

curious results of pulse propagation.

3. We have introduced the concept of covariance for pulses which gives a clear picture of

the physical situation and clarifies many of the mathematical results obtained.
4. We have studied higher order dispersion using the results of the method of point 1.

5. We show how instantaneous frequency changes from place to place for a propagating

pulse.



6. We have explicitly given results for two standard situations, when a pulse is known for
all space at a given time and when a pulse is generated at a particular place for all

time. Both situations can be understood using the local view model.
7. We give many exactly solvable examples.

8. We show that the Wigner distribution approach to pulse propagation is very fruitful

both from a physical and numerical point of view.

Organization of this report: We have attempted to make this report basic in regards to
the issues presented and hence we discuss some of the fundamental facts regarding pulse
propagation, wave equations, and dispersion. In this manner the report may be read by

someone who is not particularly familiar with pulse propagation and dispersion.

2 Wave Equations and Dispersion

The concept of dispersion comes about in the following way[12, 17]. Take the standard free

space wave equation,
10%u  Ou
So-t= (1)
ot 0x?

and examine how the simplest wave propagates

Us(llf, t) _ eikx—iwt (2)

If one takes an instant snapshot of Eq. (2), that is if one looks at it for a fixed time, then
what one has is a spatial wave and its spatial frequency is given by k. On the other hand if
we stay at one position then what we have is a wave in time and w is the frequency. Therefore
both k and w are frequencies, one a spatial frequency and the other a time frequency. In Eq.
(2) one can chose k and w independently. However, what the wave equation does is force a
relation between the two and that is called the dispersion relation. It is also important to
emphasize that by putting Eq. (2) into a wave equation we are not trying to find a solution
but just seeing if such a solution is possible at all. Also, we point out that the importance
of considering Eq. (2) is not only that it is physically simple, but because any pulse can be
decomposed in terms of it, where £ and w range over all space. Hence knowing what it does
for k and w allows one to find the general solution. This was one of the great achievements
in pulse propagation and is discussed in subsequent sections.

We also should point out that getting the wave equations, Eq. (1), was one of the major
problems of the 18th century. It was obtained by D’Alembert and Euler and each had a



different view point as to what is an acceptable solution. It started a major debate that
lasted 50 years and led to many new ideas including Fourier analysis.
If one substitutes Eq. (2) into Eq. (1) one gets that it can only be a solution if there is

a relation between k£ and w. In particular

w? = A2k? (3)
or

w = *ck (4)

Now we see that one cannot chose k£ and w at will, we must have that relation satisfied. Let

us momentarily choose w = k and therefore
uS(LL’,t) — eik(m—ct) (5)

and we see that for this case the wave propagates to the right. Moreover one can now show

that if we have any pulse at t = 0 given by u(zx,0), then

u(x,t) = u(x — ct,0) (6)

That is, it propagates without distortion. That Eq. (6) follows is because an arbitrary wave
can be decomposed into simple waves and each travels at the same speed.

We also point out that one can have a different perspective and write
ug(xz,t) = @/ (7)

and we will discuss this later.

Now consider the beam equation
1 0%u  O*u
a? ot Ozt

Again putting in the simple solution one obtains that

—0 8)

w? = o?k! (9)

and again let use choose w = ak?. Now
US(ZL',t) _ eik—iakzt (10)
_ eik(m—akt) (11)

One still has the possibility of a simple wave but now the velocity is ak, that is the velocity

depends on k and therefore if we had the sum of two waves they would not move in unison.



Hence if we have a pulse that is the sum of simple pulses there is no one velocity associated
with the whole pulse and moreover it is not the case that one can find a velocity so that
Eq. (6) is true. There are other velocities that can be associated with the pulse and that is
something we will discuss in detail later.

Generally speaking suppose we have an arbitrary wave equation, put the simple solution

in and obtain a relation
w=W(k) (12)

then
uS(x,t) = eik(m_%t) (13)

and we see that a simple wave with wave number k£ propagates with a velocity

b= W) (14)
and this is called the phase velocity. If we only consider simple waves this would be it.
However if we consider combination of pure waves, that is a pulse, these considerations are
not sufficient. In pulse propagation there is an equal and perhaps more important velocity,

the group velocity, as we will explain shortly.

2.1 General Solution

Linear partial differential equations whose solutions give wave like behavior come in many
varieties, the above two being prime examples. Fortunately, the solution to all of them can
be written in a simple form. All linear wave equations with constant coefficients may be

written in this form

ZE:‘“latn ZE: " (15)

ikx—iwt

One attempts to solve it by substituting e into Eq. (15) to give

Zan —iw)" Zb ik)" (16)

or

M
Z @y (—iw)" Zb (ik)" =0 (17)
n=0
One can solve for w in terms of k:
w=W(k) (18)
or solve for k£ in terms of w
k=K(w) (19)



Which one to choose depends on the formulation of the problem and specifically on the
initial conditions. The two basic initial physical situations, that we call case A and case B
are

Initially Given : u(x,0) (Case A) (20)

s u(0,1) (Case B) (21)

The first case is when we have the spatial wave at a given time, and the second when we
have the wave at a given position for all time. An example of the first is if we pluck a string
and let go at time zero. An example of the second is if we are at a fixed position and create

a pulse, for example, a radar, sonar, or fiber optic pulse.
We first discuss Case A. The general solution is [12, 17]

u(x,t) = V%_ﬁ / S(k,0) ehe=iW kIt gp; (22)

where S(k,0) is the initial spatial spectrum and is calculated from the initial pulse

S(k, 0) = V% / u(@, 0) =% d (23)

and W (k) is the dispersion relation as discussed above. The general solution given by Eq.
(22) can be found in textbooks [12, 17].

If one defines the time dependent spectrum by
S(k,t) = S(k,0) e Wk (24)

then u(x,t) and S(k,t) form Fourier transform pairs between x and k
1 .
u(z,t) = E/S(k,t) ek dk; (25)
1 )
S(kt) = <= / w(w, ) e da (26)

It is crucial to note that u(z,t) and S(k,t) form Fourier transform pairs between k and z

for all time. Case B will be developed in the chapter called Case B.
Important Concepts

There are a number of important concepts that arise and we discuss them here briefly.
Modes. As we have seen from the examples above there can be many solutions to the
dispersion relation and each solution is called a mode. For example for the beam equation

we have that
W(k) = ak? Wi(k) = —ak? (27)



and each solution is called a mode. The general solution is then the sum of the modes. In
this report we will be discussing one mode at a time.
Reality and attenuation. If for a particular mode W (k) is real, then there is no attenuation.

The reason for that is that suppose W (k) was complex

W (k) = Wr(k) — iWr (k) (28)

then we would have
pike—iW (k)t _ ik —i(Wr(k)—iW1(k))t (29)
— o~ Wilk)t gikz—iWg(k)t (30)

Wikt the wave would dye out. Therefore, depending

and we see that because of the term e
on whether W (k) is complex or real we will have damping or not. In this report we consider
the case where we have no damping. However we emphasize that the damped case is very
important. See the “Future Work” section of this report.

Group velocity. A central idea in the study of pulse propagation is the group velocity, v(k),
which is defined by

v(k) = W' (k) (31)

There are many plausible arguments that have been given in the literature for calling this
quantity the group velocity and most books give a plausible argument for defining the above
as a “velocity”. In a subsequent section we will give new relations for a propagating pulse
that we think gives a very clear picture as to the physical meaning of v(k) is and how it is
related to the propagation of the center of mass of the pulse. The word group is somewhat of
a misnomer but it comes about from the original derivation as historically given and indicates
how a narrowband set of waves (a group of waves) centered about the spatial frequency given
by k propagates.

Transit time. In the chapter Case B we will study the time properties of a pulse at a fixed

position. We will see that the natural quantity that appears there is
7(w) = K'(w) (32)

We will see that it is related to the amount of time it takes for a frequency to travel a unit
distance. We call it the frequency transit time.

Structural/geometrical and Media dispersion. As we have seen above for the free space
wave equation there is no dispersion. But that there is dispersion for the beam equation.
However, if one imposes boundary conditions on the free space wave equations, such as in

a waveguide, then dispersion will occur because the imposition of the boundary conditions



generally forces a relationship between w and k. This type of dispersion is called geometric
or structural dispersion in contrast to media dispersion which comes from the wave equation,
such as the beam equation. The reason one has dispersion in such a case is because there
is reinforcement, and cancellations of waves depend on the geometry and therefore certain

modes die out and others survive.

2.2 Asymptotic Solution

One of the fundamental tools for linear wave propagation has been the so called asymptotic
solution, first obtained by Kelvin using the method of stationary phase. We give it here
because most of our work will be to obtain exact equations, but it will be interesting to
contrast with the traditional asymptotic solution. We do not give the derivation here as it

can be found in most books. One takes the dispersion relation for each mode and sets

W) =3 (33)
and solves it for k which we call k;
ks = ky(z/t) (34)
These are the so-called stationary points. The asymptotic solution is then [12, 17]
1 tksx—iW (kg)t—imsgn W' /4
uq(,t) ~ S(ks, 0) W) (o)t imsen W/ (35)
ua(x, t) ~ S(ksa O) 6iksx—iW(ks)t—i7rsgn W' /4 (36)
tW" (ky)
= A, (z,t)ea@ (37)
For later convenience we define the amplitude and phase
S(ks, 0
Ag(z,t) = _S(ks,0) (38)
tW" (k)
alz,t) = kex — W (ks)t — imsgn W" /4 (39)
A simple derivation and application of this to filtered signals was given by Cohen [9].
2.3 Pulse Propagation As a Filtering Operation
The characteristic of pulse propagation is that the spatial spectrum has the form
S(k,t) = S(k,0) e Wk (40)

7



It is a product of the initial spatial spectrum multiplied by e~ ®)? But this is standard
filtering and of course in the time domain it is the convolution of the initial pulse with the

function that produces the spatial spectrum e~ ®* If we define

1 . .
wlat) = —= / e~ IW I giks g (41)

then u(x,t) is the convolution of u(x,0) with w(x,t). In particular,

u(z,t) = /u(x — 2, 0)w(a, t)dx' (42)

_ / (@, 0)w(z — ', t)de! (43)

and of course this is the classical expression of the Green’s function approach. The reason we
mention it here is that one can write a fast and simple program to calculate u(x,t) because
convolution can be done by the FFT algorithm. Dr. Patrick Loughlin [13] has written a
simple program using this ideas that we have found very useful to study the issues discussed

in the report.

3 Exact Moments of a Pulse

We define the moments of the pulse in the standard way

("), = / " u(z, )2 da (44)

and our aim is to show that one can calculate the exact moments even though we do not

solve for u(z,t). There are three reasons for this:

e First, it is always the case that one can calculate these moments from the spectrum,
that is

(x") = /x" lu(z,t)|? d (45)

:/S*(k‘,t)é\f"S(k,t)dk: (46)
where X is the position operator in the k representation
0
X =i — 47
i o (47)

e Secondly, and what potentially offers a simple method of calculating moments, is the
fact that
S(k,t) = S(k,0) e Wk (48)

and therefore the differentiation indicated by X" S(k,t) can actually be carried on.

8



e Third, once the differentiation is done, the resulting quantities are expressible in terms
of polynomials in time and S(k,0) which in turn means we can express things in terms

of the initial quantities.

We now give the results for some important low order moments and discuss the physical

meaning. The derivations are given in the appendix.

3.1 The Mean

The first conditional moment is

(:B>t:/x|u(x,t)|2dx (49)

_ / S*(k,t) X S(k, 1) dk (50)
and evaluates to
(2)i=(w)o+ Vi (51)
where
- / o(k) |S(k, 0)[2 dk (52)
k) = 28 (53)

We now discuss the physical meaning of Eq. (51):

a) First, we point and emphasize that the usual definition of group velocity, Eq. (53),
appears in a natural way as can be seen from the derivation in the appendix. It does not
have to be imposed in any way.

b) The center of mass travels with a constant velocity, V', for all wave equations and all
situations, and all starting conditions.

c¢) The velocity, V', depends of course on the dispersion relation. However it also depends
on the initial spectrum. Therefore how one starts the pulse effects the propagation of the
center of mass!

d) Also, V' depends only on the magnitude of the initial spectrum.

e) Note that V' can be considered an average with the weighing function |S(k,0)|%. It is
the average of the group velocity. Therefore v(k) can be thought of as the velocity for each

value of k and we will sometimes write

(v) :/v(k)\s<k,0)|2dk:v (54)



3.2 Second Moment

(22), = /x2\u(:c,t)\2d:c
_ / S*(k, 1) X2 S(k, £) dik

and evaluates to
(22); = (2®)g +t (VX + Xv ) + 12 (v*)

Where
(0X + Xv )y = /S*(k,t) (k)X + Xo(k)] S(k, t) di
:/S*(k,t) [v( Z%H%U(k)] S(k,t) dk
/ S*(k, 1) [zv (22 ’(k)S(k,t)} di

ok

A standard notation for such quantities is the anticommutator
[v, 2]+ = v(k)X + Xv(k)

Also this quantity can be calculated from the pulse directly. If we take

0
K——Z%

then also

(VX 4+ Xv )y = /u*(x,t) [W(K)z + zv(K)] u(z,t) dx

(58)
(59)

(60)

(61)

(62)

(63)

This quantity and its physical interpretation will be quite important and we emphasize that

it comes up naturally in the derivation. Alternative expressions will be given in the next

section, where we will also discuss its physical meaning. Also, in Eq. (57), (v?

from

(v?) = /?ﬂ(k) 1S (k, 0)[2 dk

3.3 Spread

The spread at a particular time, defined in the usual way by

o = — ()
/S* (k,t) (x)1)*S(k,t)dk

10

) is obtained

(64)



works out to be remarkably simple,
Uiu = Uim + 2t Cov,yp + t207 (67)

where

(v(k) = V) [S(k, 0)[* dk (69)

Il
—

Covgylo = %(’UX + Xv)g— (v)o{x)o (70)

We now make some remarks regarding the above expression for the spread:

1. Notice that o2 is the standard deviation of the group velocity. Why should that come
in? Notice that it is calculated at the initial time.

2. As is the quantity (vX 4 X'v )¢ basic to our considerations so is the quantity Cov,o;
we call it the “covariance” between position and group velocity because it acts very much

like the standard covariance. It is also calculated at the initial time.

3.4 Covariance

The covariance plays a basic role in pulse propagation and we now discuss it in more detail.
In the above we defined it at time zero but now we define these quantities for an arbitrary

time. In particular we define

(zv) = ${(vX + Xv), (71)
=1 / S*(k,t) (vX + Xv) S(k,t) dk (72)
If the spectrum is written in terms of amplitude and phase
S(k,t) = [S(k,t)] e?®D (73)
then, substituting Eq.(73) into Eq. (71) one obtains that
(20} = — / o(k) 8wél;, D5k, 1) dk (74)

Consider how (zv); changes in time for a pulse. The time dependent spatial spectrum is
given by
S(k,t) = |S(k,t)| e+
= S(k,0) "Wk
= |S(k, 0)] 0~ W k)
— |S(k, 0)] et RO—iW k)t

11



and hence the phase evolves as

U(k,t) = P(k,0) — W(k)t

Differentiating,
OMp(k,t) 0Pk, 0)
o ok W
" O(k1) _ (k,0)
T T L
Substituting this into Eq. (74) we have

(zv) = —/v(k)%ﬁ(k,t)ﬁdk

_ —/v(k) [&/’gz 0) -v(k)t] ISk, £)[2 dk

- —/v(k) (k. 0) |S(k,t)|2dk+/v(k)v(k)t|S(k,t)|2dk:

ok

and hence
(xv)y = (v + (V)

Now consider the covariance
Covaylt = (v)y — (T)e( V)
First note the following
/v(k)|S(k,t)|2dk:
= /v(k)|S(k,O)|2dk‘
= (v)o
Therefore, the average group velocity does not change and we have,

Covaopr = (2v) — ()1 (V)
it —=((2)o+ VE){v)o

o +t((v*) = V{(v)o)

o +t({(v?) — (v)o)

Hence

2
Covayt = Covyylo + 0,t

12



Since the coefficient of ¢ is manifestly positive we see that no matter how negative the initial

covariance is, the covariance must eventually turn positive. Why should that be so? What

are the implications of that? We will see that with the model we subsequently present these

questions will become easy to

alnswer.

Now consider the correlation coefficient between = and v,

CoV gt Covyypo + to2
Pavit = = (95)
OztOuft ¢, \/0925\0 + 2t Covyylo + t202
We now examine how it behaves for large and small times. For large times we have
~1/2
o (COVIU‘() + tO’g) 1 0-925‘() + 2t COva\O / 9%
p:cu\t - t0.2 + t20_2 ( )
_ . ~1/2
Covalo 0'926‘0 + 2t Covyypo
=1+ W 1+ P27 (97)
_ - 2
14 Cova|o 1050+ 2t Covgyo 3 ‘7:%|0 + 2t Covyyo (98)
to? 2 202 8 t202
i Covaylo | [ Covy, 102 3 (4Cov?,
= |1+ 2|0 1- 2|0__2|02+_ T4|0 (99)
to? to? 2t%c2 8 t“o;
. -1 + COVSE’UIO- [ COVSE’UIO 3COV%MO - O-§|00-12) (100)
T to? | to? 2t202
2 COViu\o - Ui\oag
— |1+ o - (101)
As time goes to infinity we have that
Pavft — 1 as t— o0 (102)

which shows that at infinity there is perfect correlation between group velocity and position!

13



For small times

P Covapo + to? (103)
i 0w \/033'0 + 2t Covyy)o + t202

Covyyo + to}

_ (104)
gvaxm\/1 + (2t Covypo + t202) /02,
Covyo + to? 1 3
o Va0 T {1 — 224 CoVaygo + 202) /0% + =(21 Covaupy + 120%)2 [0
Ou0z|0 2 8
(105)
C v 012) - COVS2C’!)
_ Va0 o ... (106)
Ov0z|0 Ov0z|0
—y 4 to—g —Coviwo (107)
pcv'u\O O-Uo-x|00-£|0
_ 2 Ov
= Puujo +1 (1 - pzu\()) Tal0 (108)
3.5 Expansion and Contraction Time
We repeat here the equation for spread
02, = 020+ 2t Covyyo + 1207 (109)

and emphasize that
e The spread has only a linear and quadratic term in time.
e The coefficient of the quadratic term is manifestly positive.

e This is not an approximation but is exact.

The quadratic term will eventually dominate since its coefficient is manifestly positive
and hence the spread will always become infinite at infinite time. But the coefficient of
the linear term may be negative and therefore the pulse may contract if the linear term
dominates the quadratic term for a period of time. We now obtain that period of time. If

we want smaller width than the original width, that is
o2 < 0o (110)
then from Eq. (109) we have
03‘0 + 2t Covyyp + tP0, < Ui|0 (111)
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or
2t Covyyo + tPor < 0 (112)

giving that it will happen for contraction times, ¢, given by

Covg,
0< to < —2 o (113)
O-’U
Therefore for there to be contraction we must have
Covano < 0 (114)

and why that should be the case will be seen simply when we explain our model. To obtain
the time when the pulse achieves a minimum width, differentiate U§| , With respect to time

and set equal to zero,

80§‘t )
5 2 Covyylo + 2to, =0 (115)
yielding
Cov,, 1
thy = ——avl0 _ 2y (116)

o2 2
therefore the time to achieve the minimum contraction is equal to the time to go from the
minimum contraction back to the original width. To determine how thin a pulse can get we
substitute t = t); in Eq. (109) to obtain

2 2 2
O-m|tM = O-x\O (1 - pxU\O) (117)
where p,,0 is the correlation coefficient,

Cov2, o
Pio = —"avl0 (118)

2 2
T50200

We now give a physical picture explaining the above results. Consider the initial pulse
to be a swarm of particles where each particle has a constant velocity and where the swarm
has an average velocity V. We take V' to be positive, that is the center of mass is moving to
the right. Now suppose that initially the particles on the right have high velocity and the
particles on the left have relatively slower velocity. Since everybody travels with a constant
velocity the spread will be higher once the particles start to move. On the other hand
suppose that fast particles are to the left and slow particles are to the right. Once the swarm
starts to move the fast particles are catching up and the distance between the slow and fast
particles is decreasing. That is the swarm contracts. Eventually the fast particles catch

up and that is the time when the pulse width is minimum. Once they catch up, they pass
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them and the distance then continues to increase. The reason the covariance comes in such
a fundamental way is that it tells us whether the fast particles are to the right or left of the
pulse. If the covariance is positive the fast particles are to the right of the slow particles and
if it is negative it means they are arranged the opposite way.

We now explain why the contraction time also depends on the spread of initial velocities.
If the spread is very large then that means there is a big difference between the fast and
slow particles and hence the spread in position will decrease faster since the fast particles
can catch up quickly to the slow particles. Conversely if the velocity spread is small then it
will take much longer for the fast particles to catch up to the slow particles.

Spread of Uncertainty Product. Using the fact that for pulse propagation

Uzu = ‘713\0 (119)

the uncertainty product evolves as
aiﬁag‘t = [aiﬁ + 2tCovy,, + tzag]ag‘o (120)
= Ui\ogim + [2tCov,, + t%ﬁ]aim (121)

The uncertainty product eventually goes to infinity but can also momentarily decrease.
When the uncertainty product is large the signal is said to be asymptotic. Thus in pulse

propagation all signals become asymptotic.

4 Local Model of Pulse Propagation

We now give the details of a simple physical model that gives the identical equations as pulse
propagation and from which all the quantities can be understood simply. More importantly
we argue that the model can be used to visualize and understand pulse propagation in
general. Motion of objects is simpler to visualize and understand than waves and certainly
much of the vocabulary of waves is derived from the desire to make believe waves act like
particles. We present a simple model of particle motion that is very close to wave motion
and which hopefully will help to understand wave motion phenomena. The reason one may
want to develop a particle view of wave motion is manifold. First, it may give us a clear
and more intuitive picture of what is going on with wave phenomena. Second, it could
lead to practical numerical schemes because instead of solving the wave equation we can
evolve particles. Third, it may help to understand non linear waves which are particularly
difficult to visualize. In addition, as we will show, in trying to understand wave propagation

one comes across certain physical quantities that appear, mathematically, like “correlation”,
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although their mathematical properties do not fully match those of classical correlations. By
making a particle model we may be able to understand better correlations between quantities
as they appear in the study of wave propagation.

Consider the simplest motion of a particle, the motion with a constant velocity,
Ty =9+ vt (122)

where z; is the position at time ¢, and the constant velocity is V. Now suppose we have a
group of particles and the group is characterized by a density at the initial time. If all the
particles have the same velocity it is clear that the group will move but keep its shape. Now
suppose the velocity of each particle is not the same and suppose we pick the velocity of

each particle depending on the initial position, xy. Hence we write
v =v(xo) (123)
and now we have
z(t) = xo + v(xo) t (124)
For the density of particles we will use p(z,t), that is
p(x,t) = the density of particles at time ¢ (125)

Also for convenience we use the following notation for the density at time zero,

p(o) = p(z,0) (126)

It will be helpful to think of this common situation. Suppose we have a large number of
runners at the starting line of a marathon and let us assume they take up a city block.
We could place the runners in many different initial configurations. The most common
arrangement is where one places the fast runners at the starting line, but we could place
them at the end of the block, or in the middle, or any way we want. Each of these different
ways is characterized by the function v(xy). How will the group of runners behave once the
gun goes off? Clearly if the fast runners are at the starting line the swarm will immediately
spread. But if the fast runners are at the back at the start of the race, then the swarm will
first contract and then expand.

Now let us study how the group of runners behaves after the starting gun. As usual we

define moments as
(z")y = /x"p(:c,t)dx (127)

However we do not have to know p(z,t) explicitly because we can calculate everything from

the initial density

(2"}, = / (0 + v(z0) £)" (o) da (125)
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First consider the center of mass. One takes expectation values of both sides of Eq. (124)
(z1) = (@o) + (w(wo) ) 1 (129)

or

()= (z)o+Vt (130)

where
V=_(w)= /v(zo)p(xo)dxo (131)

Eq. (131) shows that the center of mass moves with a constant velocity which is the average

velocity of the group at the initial time. Now consider the second moment. Square Eq. (124)
x? = (2o + vot)? = x§ + 2wovot + V3t (132)

and take averages of both sides, giving
(%) = (2% )o + 2(av ot + (v* )t (133)

where

{xoug ) = /xov(xo)P(:Eo,O)dxo (134)

The spread of the swarm is

oge = (@) — (@)? (135)
= (2%)o + 2(xv)o t + (V") t* — ({(x)o + (v)ot)? (136)
= (2%)o — ()5 + 2({zv)o — (x)o(v)o)t + ({v*)o — (v)5)? (137)
or,
o2 = 020 + 2 Covigyot + oot (138)
where 03‘0 is the standard deviation of the initial velocity
oy = (V7)o — ()5 (139)
and where the covariance is
Covyzjo = (zv(x))o — (v)o(T)o (140)

It is the covariance between the initial position and initial velocity. One can write the spread

in terms of the correlation coefficient,
Ui\t = 0-3\0 + 2pvx\00x|00v|0t + 012,\0152 (141)
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where the correlation coefficient is

COVIU‘()

Pozlo = (142)

Oz|0 Ov|0

With one exception, the coefficient of t? in Eq. (141) can never be made zero and therefore
the swarm must spread to infinity. The coefficient of #* can be made zero only if we take
vy = c. For that case we have that Cov,,; and 012)‘0 are both zero and hence a§|t = ‘7:%|0 and
the swarm will not spread. While it is certain that the swarm will spread eventually, the
swarm can contract for a certain time. For the pulse to contract we must have Cov,, < 0

which gives

Cov,,
0< t< —2 =0 (143)
Uv|0
for the contraction time.
Let us also calculate the covariance as a function of time. First, we have that
z(t)v(t) = (2o + vot)vg = Tovo + Vi t (144)
Taking averages we obtain
(xv)y = (zv)o + (vg )t (145)
The covariance at time ¢ is then
Covgye = (zv)e = (@) (v)e (146)
which gives
Covmt = Covxv‘o + agwt (147)
We see that the covariance must increase. For the correlation coefficient we have
Cov,, Covo + 02t
Pzo|t = I = | (148)

The covariance and correlation coefficient increase because as the swarm spreads the fast
particles will be more and more up front of the swarm and will hence be highly correlated
with the relative position in the swarm. Indeed as time goes to infinity the correlation
coefficient goes to 1,

Paoft — 1 as t— o0 (149)

To understand these equations consider the case where the fast runners are lined up in
the front. The initial covariance is positive, which indicates that fact. At the start the fast

runners take off, the slow runners at the back do not keep up and the swarm immediately
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spreads. However, suppose that the fast runners are in the back: the covariance is then
negative which means that the slow runners are up front. Now, for a short time after time at
the start of the race the fast runners are catching up to the slow runners and therefore the
swarm contracts. Also, the bigger the initial difference between the fast and slow runners,
the longer will be the contraction time. In addition the bigger the difference in speed between
the fast and slow runners the smaller will be the contraction time, because the fast runners
will catch up more quickly. The same type of behavior is exhibited by pulse propagation in

dispersive media.

5 Instantaneous Frequency and Dispersion

“Instantaneous frequency” is one of the most fundamental quantities; it is frequency as
a function of time. Wohile it is intuitively obvious that frequencies do change, its exact
mathematical expression is far from obvious. Generally speaking instantaneous frequency
is the derivative of the phase and the question has been how do we determine the phase.
This is an old and important problem and the general solution is usually the one given by
Gabor. Take the real signal and delete its negative frequencies and form a new signal just
from the positive ones. That results in a complex signal and the derivative of the phase is
then the instantaneous frequency. However this procedure has not been fully investigated
for a pulse and we do not do so here but just point this out. Here we use the solution to the

wave equation and express it in terms of amplitude and phase,
u(z,t) = Az, )@ (150)
to define instantaneous frequency as

il 1) = — 2l 1) (151)

and spatial local frequency by
ke t) = (e, ) (152)
ot
The reason for the differences in sign is because of the basic definition, Eq. (2).

We now address the problem as to how does the instantaneous frequency vary from point
to point as a pulse propagates and how does dispersion effect that. For example suppose
a sound is made and there are two people each standing at 50 and 100 feet away. Will
they hear the same sound? The answer is yes because for frequencies that humans speak at
there is no dispersion in air. However suppose there is dispersion, how would the frequencies

change? That is how does the instantaneous frequency of a pulse depend from position to
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position? We have not been able to do this exactly but we have done it approximately using

the asymptotic solution. However, for many examples we have been able to do it exactly and

hence we can compare our approximate solution with these exact solutions. For convenience

we repeat here the asymptomatic solution

1 . : . "
Ua(l'> t) ~ S(ksa O) tW”(k )62ksx—zW(ks)t—z7rsgnW /4

and the amplitude and phase are

1
AG(I,t) = |S(l{?s,0)| W
Pa(x,t) = P(ks, 0) + ksx — W (ky)t — msgn W’ /4
where the value of k; is obtained from solving

W'(ks) = x/t

Differentiating the phase, p,(x,t), we have

0
wi(z,t) = —agpa(x,t)
_ Aok, Ok, dW(k) Ok,

~a o e T o V)
B dap dW (k)| Oks
= {d/{:s +ax—t 7 } BT + W (k;)
B dvp x| Ok,
and hence a0 ok
From Eq. (156) we have
" aks _ 2
W (ks) T x/t
giving
Ok =
ot t2W"(k,)
_ W(ks)
W (k)
Wk
W (k)
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and therefore we can express the instantaneous frequency in the asymptotic regime in a

variety of ways,

1) = s o );Z;” (k) (166)
- W,,((k)) W Wk (167)
W/2(]{? )

It should not be concluded from these expressions that the instantaneous frequency varies
in any specific way. For example by looking at Eq. (166) one may think that is a linear
function of x. That would not be right because in all of the above examples k, is a function
of x and t. However one can get a sense of that if we expand the dispersion relation in a
power series.

Spatial Local Frequency. We now consider the issue of spatial instantaneous frequency.
We define it by

0
. = __ 1
kilx,t) = o-o(2,t) (169)
Differentiating the phase, ¢,(z,t), we have
k(1) = (a1 (170
i\ - ax(pa xz,
_ dyp Ok, Ok dW (ks) Oks
= Uk, 0z +x01’ +ks—t P (171)
i) AW (k,)] Ok,
[dk S ] (172)
[dy Ok,
—{dks+x—tt] =+ (173)
_ dip Ok,
= k. 0x + kK (174)

But from Eq. (156) we now have that

" 8ks .
W"(ky) o 1/t (175)
giving
oks 1
Or (k) (176)
_ Wks)
= TV (177)
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and hence

1 dy(k,0)
T W (k) dk,
_ W'(ks) dy(k,0)
T oWk, dk,

ki(z, 1) + ks (178)

+ ks (179)

This is the spatial instantaneous frequency.
Translation invariance. We point out that while the exact solution is translationly

invariant the asymptotic solution is not. In particular suppose we define

Ut (2,0) = u(z — 20, 0) (180)
then for the exact solution

U (z,t) = u(x — xo, t) (181)

Therefore, if we work things out for u(z,t) it is easy to take all formulas and change them
for the case u(z — o,t). One merely substitutes x — z for . However for the asymptotic
solution that is not the case, but we can obtain a formula to handle the situation. In general
we have that

Sip(k,t) = e*™ S (k, t) (182)

and therefore
Ug gr (2, 1) = € ™0u, (2,1) (183)

The phase hence changes according to

Patr(2,t) = @a(,1) + ksg (184)

and the instantaneous frequency is therefore

wir(m,t) = wi(z,t) — a@is 0 (185)
= wilz,t) + % (186)
similarly
i (0, 1) = Fy(, 1) ZZS % (187)
= ki(a,t) — th’E’(Eks) (188)
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6 Higher Order Dispersion

Historically for a variety of reasons dispersion relation which are at most quadratic have
been intensively studied. Perhaps the main reason is that for that case certain integrals can
be carried out. Higher order dispersion is when there are terms in the dispersion relation
that are higher than quadratic and it is important to understand their effect. Now in our
previous development we have shown how to obtain exact relations for any dispersion relation
and therefore we should be able to get exact results illustrating higher order dispersion. To
obtain a sense of higher order dispersion we first do a specific example and then see if with
the simple example there are qualitatively different results. If so then we will try to prove
these in general. The example we use is where we add a cubic term to the dispersion relation
10

W (k) = ck +vk*/2 + nk*/3 (189)

and for the initial pulse we take
U(ZL', 0) _ (a/ﬂ‘)l/4 6—ax2/2+iﬁx2/2+ikox (190)

For each physical quantity of interest we shall give the result and discuss the effects of the
cubic dispersion term.

Velocity of the center of mass. One obtains

1
V:c+7ko+n[k8+ﬁ] (191)
2_'_ 2
:c+7k0+n{k§+a2a6] (192)

Without the cubic term, it is seen that what enters are ¢ and kjy, and that is reasonable
because kg is just the average spatial frequency of the initial pulse. However, adding the
cubic term introduces fundamental new parameters, namely a and (3, which were absent
before.

Spread of Group Velocity. The spread is

2 2
O UL N PR
= 0 T Loy oL (193)
1 [~ 1
= (5 + ynko + n? [ng + 2—@/}) (194)
a?+ 32 (4 ) 1
= n. 2k2 + — 1
5 <2+777k0+77 [k0+2a/]) (195)

Covariance. As we discussed the sign of the covariance is crucial in determining whether a

pulse will contract and for how long the contraction will go on, and therefore it is important
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to see how higher order dispersion effects that. The covariance is now given by
Covyy = A [l
o L2

The higher order results now depends on ky. If we only have the quadratic term then the

+ nko} (196)

sign of the covariance is only determined by the sign of 3, assuming that both « and v are
positive. But now we have another possibility because the sign and magnitude of kg is at
our disposal. In fact, we can make the covariance less than zero even if we take all other

parameters positive. This will be the case when

lla 7
v S f k S I 1
Cov 0 or oS [ﬂ 2] (197)
Spread. Putting the above results into Eq. (67) we have that the spread is
k 1
2 _ 2 19 B <l ) 2 [7°, ko n 2 1
Oyt = Ogo T t{a 2+nk0 +t 5 -+ - + k:+2 (198)

2

2 By 1y > (o2
=02+ 2t Lé <2+nko>}+a, {2 + ko + 1 (Qk:

L )} (199)

200
— 52 |1 2 12 ) 2 O‘ + 52
= 030 |1+ 28t(y + 2amko) + (o + 5%)t? § % + 2ynko2n” (200)

Contraction. Using Eq. (198) the pulse will contract for
0<t<T (201)

where

B (v Lk
T=— o (2+”0)2 : (202)
’}/2/2 + ’777]{50 + 772 (2]{?0 + W)
23 ” (2k3 + 5)
v(a? 4+ 3%) (1 + 2nko)

_ (203)

If one compares the cubic case with the quadratic case we see that an important new signal
parameter comes into play, namely ky. It is probably the case that this parameter would also
enter into the quadratic case if an initial pulse was taken so that it would not be symmetrical
about ky. Nonetheless what our example shows is that there is a wide variety of possibilities
to control the contraction and rate of expansion of a pulse. It is important to appreciate that
the contrasts may just be due to the fact that we have used a Gaussian example and that
perhaps for the quadratic term the peculiarities arise just because of that. That is, perhaps
the reason the cubic terms effects arise is artificial, and perhaps they really are there in
general but absent from this examples. Further studies are needed to understand this fully
but what the above shows is one can calculate appropriate quantities exactly for the sake of

comparison.
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7 Wigner Distribution Approach

We now discuss how the Wigner distribution [18, 3, 4] gives considerable insight and calcula-
tional advantage into pulse propagation. It is natural that it should be the case since the aim
of time-frequency analysis is to show how frequencies change in time. The spatial/spatial-
frequency Wigner distribution is [11, 15]

1

Wiz, k,t) = o

/u*(m — I u(x+int)e ™ dr (204)
and in terms of the spatial spectrum it is
Wz, k1) /S* (k+ 160,) S(k — 10,¢) =% df (205)

We first give the important moments in a general way, that is without specifying that we
are dealing with pulse propagation. Before giving these moments we repeat here the basic

definition of phases and amplitudes for both the signal and spectrum

u(z,t) = Az, t)e¥®! (206)
1 .

S(k,t) = Nor /u(:)s,t) e~k dy (207)

= B(k,t)e*D (208)

The Wigner distribution satisfies the marginals,
/W(a:, k,t)dk = |u(z,t)|? (209)
/W(:c, k,t)dr = | S(k,t) |2 (210)

For the sake of clarity in this section we will not normalize the moments with their respective
marginals.

A straightforward calculation yields
(k)ps = /k‘W(x, k,t)dk (211)

= %gp(z, t) (212)

which is the instantaneous spatial frequency. Also,
(), = Bk, 1) / oW (2, b, )da (213)

0
= (k1) (214)
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and the covariance is

(kx)y = /ka(m,k,t)da:dk (215)
:/x&péz, t)|u(x,t)|2dx (216)
_ aw(kvt) 2
_ —/k LSk 1) (217)

Now let us specialize to the case of pulse propagation. We repeat here for convenience

the basic relevant equations that characterize pulse propagation

S(k,t) = S(k,0) e Wk (218)
= B(k,t)e "D (219)
= B(k, 0)eV 0wk (220)
and
B(k,t) = B(k,0) (221)
U(k,t) = P(k,0) = W(k)t (222)

Therefore using Eq. (222) we have

(1)1 = — (b 1 (223)
8 !

= —gkw(k, 0) + W'(k)t (224)
=~ (k,0) +v(k)t (225)

But at ¢t =0 9
(T)po = —%w«, 0) (226)

and therefore

<x>k,t = <37>k,0 +v(k)t (227)

This is an interesting result because it predicts exactly the picture we developed previously.

Now consider

() = — / (D 50y (228)
—— [ K o0) = RIS (80) (229)
= (ko + (hu(R)hot (230)
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which agrees with our previous results. The important point to observe here is that these
expressions and results came out naturally using the Wigner distribution.

Evolution of the Wigner distribution and an approrzimation. Our aim is to express the
Wigner distribution at time t in terms of the Wigner distribution at time ¢ = 0. The
reason we consider this problem is because a considerable simplification occurs. For pulse

propagation we substitute Eq. (218) into Eq. (205)

Wiz, k,t) = % / S*(k +36,0) S(k — 0/2,0) e 0reilethto/2—wk=0/2)lt gg (231)
Starting with
Wz, k,0) = % /S*(k +10,0)S(k — 16,0) e dp (232)
we invert to obtain,
S*(k+160,0) S(k — 36,0) = /W(x, k,0) e da (233)

and inserting into Eq. (231) we have

W(QE k t) — i // W(x/ k 0) e—i@(m’—m)ei[W(k+9/2)—W(k—9/2)}t de dx/ (234)
Y Y 27T ) )
This is exact. It is convenient to write this in terms of a Green’s function for the Wigner
distribution,
1
Wiz, k,t) = 7 /W(l’/, k,0)L(z" — x,t) da’ (235)
i
where
L(:C/ -, k, t) — / e—i@(m’—x)ei[W(k+9/2)—W(k—9/2)}t d@ (236)

It is very interesting to find an approximation to the Wigner distribution with the follow-
ing aim. The evolution may be simple because we are in phase space and it is generally the
case that evolution equations take on a particularly simple form in comparison to evolution
of the density itself. Expand [W(k +60/2) — W (k —6/2)] in 6

00 (2n+1) 2n+1
Wk+0/2) = W(k—0/2) =) V(V% n 1(;?) egn

1
~ (k)8 + ﬂv@)(k:)e?’ —o(237)

where v+ (k) is the 2n + 1 derivative with respect to k. Keeping only the first term
L(x' —x,t) ~ / e~ 0@ =) 000 g — (2" — 2 + v(k)t) (238)

and substituting into Eq. (119) we have
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W (z, k,t) ~ W(z —v(k)t, k,0) (239)

This is a remarkably simple result and gives a very simple way of propagating the Wigner
distribution for pulses. Note that no calculations are required, just a simple substitution.
That is, no equations have to be solved or integrated. This method may be a good practical
method for evolving pulses in time. We now address how the method can be improved.
What is needed is further approximation by keeping more and more successive terms in the

expansion given by Eq. (123). Going to the next term we have
L(LU, —z, t) ~ / e—i@(x’—x)eiv(k)t9+iv”(k)t03/24 do (240)

_ / = flla! —a (k)] i (1624 g (241)

This integral can be expressed in terms of Airy functions but we do not do so here. This
may offer a considerable better approximation than Eq. (239)

We point out that the recovery of the pulse from the Wigner distribution is an important
problem. The signal can be recovered from the Wigner distribution up to a constant phase
factor. However in this case the constant phase factor may be a function of time! This issue
has been considered by Leavens and Mayato.

Example. Consider the initial pulse given by
u(:c, 0) _ (04/71')1/4 e—ax2/2+iﬁm2/2+ikox (242)

The Wigner distribution is

1
Wz, k,0) = — ¢ 0@’ ~(k=fe—ko)*/a (243)
7r
Therefore we have
Wz, k,t) ~ W(x —v(k)t, k,0) (244)
B L e L e S (245)
T

This is a general result for the initial pulse where the dispersion relation is arbitrary. If we

now chose

W (k) = ck +vk*/2 (246)
v(k) =c+ vk (247)
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we have

Wiz, k,t) ~ W(x —v(k)t, k,0) (248)
=W(x — (c+ kvt), k,0) (249)
= %exp [—a((z —c— kyt)* — (k — Bz — c — kvt — ko)*/a] (250)
Explicitly
Wz, k,t) ~ %exp [—a((z —c— kyt)* — (k — B(z — c — kvt — ko)? /] (251)

It is remarkable that for this example the answer is exact!

A further example is

W (k) = ck +~k*/3 ; v(k) = ¢+ vk* (252)
and hence
Walz, k,t) = W(x —v(k)t, k,0) (253)
= W(x — ct —vk*, k,0) (254)
— 1 6—&((x—ct—’yk2t)2—(k—ko—ﬁ(:c—ct—’ykzt)z/oc (255)
s

8 Case B

We now address the case where we are at a fixed position and generate a pulse, which is the
situation appropriate in radar, sonar and fiber optics, etc. We generate u(0,t) where we have
taken x = 0 where the pulse is being generated. Many new concepts are now introduced for
this case. An important issue is whether we stick with the definitions of the relation of pulse
and spectrum as before or we change to make it easier and more conventional to standard

signal analysis. We have decided to take
e—ikm-l—iwt (256)

for the fundamental solution. Substituting into the wave equation

N o"u M iz
n=0 n=0
one obtains
N M
D an(iw)” =Y " bu(—ik)" =0 (258)
n=0 n=0



Solve for k£ in terms of w
k=K(w) (259)

The general solution is then given by

1 .
u(z,t) = \/—2_7T/F(w,x) e dw (260)
with
Flw,z) = F(w,0) e KW (261)

where F(w,0) is the spectrum evaluated at x = 0,

Flw,0) = \/% / w(0,1) =" dt (262)

Also,
Flw,z) = \/%_W/u(x,t) e~ dt (263)

That is u(z,t) and F(w,z) form Fourier transform pairs for any x. In analogy with group
velocity, K'(w), will be of importance . In particular we define the frequency transit 7(w)

for a given frequency by
7(w) = K'(w) (264)

We call it the frequency transit time because as we will see it will turn out to be the time taken
for a given frequency to travel a unit distance. We now discuss some important concepts for
this case and ones thinking must change from the previous case. One must visualize that
one is staying put at a particular place and is measuring a number of important quantities.

Suppose we have a signal given by f(¢), the mean time is traditionally defined by

(6) = [elrwrar (265)

The only difference between this and the usual definition is that now will be a function of

position. Similarly the duration of the signal is given by

o = / (t— (02 de (266)

In the case of pulse propagation we use the same definitions but this signal will be u(z,t)
and hence is a function of position. We now develop the analogous ideas and formulas for

this case as we did before and will introduce a number of new and interesting viewpoints.
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We first developed the general approach in terms of calculating moments, that is moments

at a particular point in space,

(t"), = /t" |u(x, t)|? dt (267)

= /F*(w,x)T"F(w,x) dw (268)
where 7 is the time operator in the frequency domain
0
T=i— 2
i oy (269)

We now discuss each moment and its physical interpretation. Consider the first moment. It

is given by

(t), = /tW(x,t)Pdt (270)

= /F*(w,z)TF(w,:E) dw (271)
and this evaluates to
(t)y = (t)o+Tx (272)
where
T = /T(w) |F(w,0)]? dw (273)

These equations lead to the following interpretation. 7(w) is the time that it takes a sine
wave generated with frequency w to travel a unit distance and 7' is the average time for all
frequencies where the spectrum is used as the weighting function. Therefore the mean time
at position z, (t),, is the mean time at position (¢ )y plus the time it took to travel from
the initial position to x. Now that quantity is Tz because as just discussed T is the time
per unit distance and x is the distance traveled since the particle started at z = 0 initially.

For the second moment
<t2 Yo = (t2)0 +x(tT +77))o+ :52<7'2)0 (274)

where
(TT +7T71))o (275)

Where
F*(w w)T +T7(w)] F(w,z)dw (276)

o= [
- [Fe { ()i i >v<k>] Plon)ds  (277)

/ F(w { i a(f; Dy (W) F (k. t)] o (278)
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A standard notation is

[7(w),t]y =7(W)T +T7(w) (279)
Also if we define
W = —iﬁ (280)
ot
then
(r(W)t + tr (W), = / o, ) [rOV)+ t7 (V)] ule, ) dt (281)
The duration is
aﬁm = 0,52‘0 + 2z Covy, + 2202 (282)
where
02 = /(T(w) —T)*|F(w,0)|*dw (283)
Covyr = (7t ) — (7 )o(t)o (284)

The mathematics is as before and if we write

F(w,z) = |F(w,z)]e" @) (285)
then in general
(Tt)e =3(7T +T7), (286)
= —/T(w)a—w|F(w 7)|? dw (287)
Ow ’

Now let us consider how duration changes with position. As before we note the dominant
term is 2202 (for large x) and its coefficient is manifestly positive. Therefore for large
distances the duration must go to infinity no matter what the duration is at the point where
it is generated. That is at large distances, and in particular at infinity the duration is infinite.

We now calculate at what spatial points x¢ the duration is smaller than the duration at

the point of generation, z = 0. The duration will be shorter if af‘w < af‘o, which gives

_ COV?T\O
0< 20 < =2 5 (288)
O-T
It will be a minimum at the following point
COVt7—|0 1
Ty = — p =5 (289)
and the duration at xj; is
COVtT z
Uf‘xM = at2|0 — T‘ = at2|0 (1 — pmx) (290)

T
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where )
COVtT\O
22
Oi O-T\O

2

o= (291)

The Covariance Between Time and Transit Time. As before the covariance is the crucial

quantity, but now it is the covariance between time and frequency transit time
Covirle = (17 )e = (7)a(l)a (292)

If we express the spectrum in terms of amplitude and phase then

F(w,2) = |F(w, )| e (293)
= F(w,0) ¢ K@ (294)
= |F(w,0)| eV @ik (295)

and therefore the phase as a function of position is

¢(w7 LE‘) = w(wu O) - K((‘U)I (296)
and hence o ) 0(.0)
W, T w
9 — b _ K/ 2
R R (w)x (297)
" Ip(w,a)  D(w,0)
w,T) w,0)
0 = 0 TL (298)
Substituting this into Eq. (287) we have
(t7)e = (7)o + (%) (299)
Therefore
CovVirle = (I7)o — (T)a(t)e = (ET o+ (72 )2 — (7)o((t)o + (7 )oz) (300)
giving
Covirlz = Covirpo + ro? (301)
The correlation coefficient is
C T|x C T 2
pur = 2 oo ¥ (302

OtjaOr|a O’T‘O\/Oﬁo + 22 Covyrpg + 2202

and we have that

Prriz — 1 T — 00 (303)

34



Covariance Between Time and Frequency. It is interesting to calculate the covariance be-

tween time and frequency at a given position,

Covigle = (tw)e — (t )al{w)a (304)
Now
(tw)y = 3(wT +Tw), (305)
_ / o Lg:’ ) P (w, ) do (306)
:—/w[W—TxHF(w,x)Fdw (307)
:—/w[W—TxHF(w,O)Fdw (308)
Hence
(tw)y = (tw)o+ (WT o (309)
and therefore
Covigle = (Wi )e — (W)a(t)a (310)
= (tw)o+ (w7 hoxr — (w)o({t)o+ Tx) (311)
= Covylo + 2 Covyro (312)
where as usual
Covirjo = (WT)o — (w)o( 7)o (313)

Relation between frequency transit time and group velocity. If one interprets the group ve-
locity as the velocity that a certain frequency has and if one interprets the frequency transit
time as the time it takes a frequency to travel a unit distance, then clearly there should be
a relation between the two. Let us think in terms of the analogy with runners. Suppose the

velocity of a runner is v and hence in a time T he travels
x =0T (314)

Now his frequency transit time 7 is the time it takes to travel a unit distance, that is given
by
T=T/x=1/v (315)

and hence we expect the relation between frequency transit time and group velocity to be
T(w) = 1/v(K(w)). (316)

That is indeed the case.
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8.1 Instantaneous Frequency and Local Spatial Frequency
As before we define amplitude and phase by,

u(z,t) = Az, t)e¥®! (317)

but because of the change in convention for this part we define instantaneous frequency as

0
. - 1
i) = (e, 1) (315)
and spatial local frequency by
k(1) = — ol (319)

Asymptotic solution. We now give the asymptotic solution for case B. One sets
K'(ws) =t/x (320)

and hence
1

uq(x,t) ~ F(w,0) W

iwt—iK (w)z—imsgn K" /4 - (321)

and the amplitude and phase are given by

1
|Ua(l’, t)| - |F(w7 O)| ZE'K//(CU) (322)
a(z,t) = Y(w,0) — K(w)z + wt — 7sgn K" /4 (323)
Instantaneous Frequency. To obtain the instantaneous frequency we have
wilz,t) = % (324)
_ Ow [0y dK (w)
=5 [&u T +t}+w (325)
which gives
Ow O
and since 5
K'(w)22 =1 2
)5 =1/z (327)
giving
1 K’
Ow _ K'(k) (328)

ot aK'(w) tK"(k)
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Hence,

1

wi(z,t) = K@) 0w +w (329)
_ K'(k) 09
= g e (330)

Spatial local frequency. The spatial instantaneous frequency is

0
ki(x,t) = —%cpa(x, t) (331)
o [dY Ows | Ows dK (wy) Ow,
- | dws Oz i or K{w,) =@ dws Ox (332)
o [ay dK(ws) Ows
= | o ] e + K(ws) (333)
o [dy Ow,
= — ® +1t— x;] o + K (ws) (334)
or y
W
ki(x,t) = . or + K(ws) (335)

But from Eq. (320) we now have that

" _ 2
K" (ws) o t/x (336)
giving
Ows t
or — x2K"(w,) (337)
(338)
and hence . J
ki(x,t) = — v + K(ws) (339)

22 K" (wys) dw

8.2 Wigner Distribution (Time-Frequency)

The Wigner distribution now is the conventional time-frequency one. Again we will use the

standard notation for the signal but now for the spectrum we have

u(x,t) = A(z, t)e ! (340)

1 —iwt
Flwa) = o= / ne: dt (341)
= B(w, z)eV@e (342)
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The time-frequency Wigner distribution is then

1 .
W(t,w,z) = gy /u*(:c,t — i) u(z, t+ 37)e ™ dr (343)

™

1 F*(w+10,2) F(w—160,z) e df (344)

:27r 2

The instantaneous frequency is the first conditional moment and is given by

(W) = /wW(t,w,:c)dw (345)
0
= £ o(t,) (316)
and the group delay is
(t)r = Blw,z) /tW(t,w,x)dt (347)
0
=% (w, ) (348)
Also the covariance between time and frequency is
(wt), = /th(t,w,z)dtdw (349)
_ / 12000 o Pt (350)
ot
- [P Db (351)
ow
Now for pulse propagation we have
Flw,z) = F(w,0) e K@e (352)
— B(w, O)eiw(w,O)—iK(w)x (353)
and
B(w,z) = B(w,0) (354)
¢(w7 LE‘) = w(wu O) - K((‘U)I (355)
which gives
(0 = —otb(0,) (356)
wa = g, YW
9 :
= —8—w¢(w, 0) + K'(w)z (357)
0
= —8—w¢(w, 0) + 7(w)x (358)



Atz =0

and therefore

and also
(wt)e = = [ 2T )
—— [l (0,0) — )| Fw.0)
= (wh)o+ (wr(w))or

which agree with the results of Part B.

(359)

(360)

(361)

(362)

(363)

Now consider the relation of the Wigner distribution at position x and how it is related

at position zero. We write

1 L
Wt w )= / F*(w+160,0) F(w—0/2,0) e il @tt/D=K =0/ gg

and also 1
W(t7w7 O) 2 /F*(u) + 19 0) ( %97 O) 6—i€t A6
T

which gives,
F*(w+30,0) F(w—36,0) = /W(t,w, 0) e dt

Inserting this into Eq. (364) we obtain
W(t w, LU //W W 0) —i0(t' — ) ilk(w+0/2)—k(w—0/2)]z do dt'
which as before we write as
W(t,w,z) = /WtwO)L(t—t:B)dt

with
Lt —t,w,x) = / e =) il K(wt0/2)=K(w=0/2)] ¢

Now expand [k(w + 0/2) — k(w — 6/2)] in a power series in 6 to obtain

i K(2n+l)(w) g2n+1 1

(2n+ 1) 2n ~ 7(W)0 + =73 ()6

Kw+0/2) — K(w—10/2) = 51

(364)

(365)

(366)

(367)

(368)

(369)

(370)

where K@) (w) is the 2n + 1 derivative with respect to w. Keeping only the first term

L(t’—t,x)N/ 00 9 gy = 51—t 4 7(w)x)
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Substituting this into Eq. (368) we have

W(t,w,z) ~W(t—71(w)x,w,0) (372)
As an example consider
u(0,t) = (afm)M/4 emol/2Hi0E 2wt (373)

and the Wigner distribution is

1
W(t,w,0) = = ¢ o~ (w=ht=wo)?*/a (374)
s
and therefore
W(t,w,z) ~W(t —7(w)z,w,0) (375)
_ L at-r@m) —owo—p-r@))?/a (376)
s
If we further assume that
K(w) = Dw + yw?/2 (377)
T(w) =D +yw (378)
We have
W(t,w,x) ~ W(t—71(w)z,w,0) (379)
=W(t—(D+wy)r),w,0) (380)
1
= —exp [—a(t = (D +wy)z)* — (w— B(t — D — wyz — wp)?/a] (381)

9 Space-Time Signals and Distributions

9.1 Time-Frequency/Spatial-Spatial Frequency Representations

In the previous sections we considered a joint representation for time and frequency for a
given position. We also considered joint space and spatial frequency distribution for a given
time. However as of now there is no way to handle relations that involve any mixed variables,
for example position and frequency. In this section we show how one can define for pulse
propagation a four dimensional representation involving jointly the four quantities, time,
frequency, space, and spatial frequency and for which the previous ones are special cases.
We will develop the material in this section in the following way. First we will derive the

equations keeping everything general and then specialize to the pulse propagation case.
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9.2 General results
What we seek is [7]
Wz, k,t,w) = Joint distribution of time, frequency, space and spatial-frequency  (382)

We use the four dimensional Wigner distribution defined by

1 1 1 . .
Wz, k,t,w) ( ) // Tx, - 57) u(z + §Tx,t+ 57) eIk G g (383)

Now, the four dimensional Wigner distribution may be written in a number of different
ways all of which are useful depending on the calculation being done. First, we define the

two dimensional spectrum of the signal, G(k,w), and also list our previous definitions

u(z,t) =

E%
~

i

[
=

t)eie®t (384)

1 ik
=—— [u(x ke = B(k, t)e™ " (385)
\/27‘(‘ /
1 . .
F(w —— [ w(x,t) e dt = B(w, z)eV@) (386)
= [utat ,
1 o .
Gk w) = o / / u(x,t) e Ik gt do = L(k,w) e k) (387)
T

With these definitions we have

1 1 . )
Wiz, k,t,w) < ) //G* (k+ Hx,w+ 6’) Gk — §9x,w— 56’) e~ 1%2=3% 40 4p, (388)
and
W (e kot w) = — 2/ S (k4 20, ¢ — 27) S(k — 20, — ~7) eI dh dr (389)
,’L’, 9 7w - 271' 2 T 27— 2 T 2T T
and also

Wz, k,t,w) ( ) // F*(w+ 9 x— =Tp) F(w— %9 T+ ;Tx)e_jw_mk df dr, (390)

The marginals of the distribution are derived and given in the Appendix.

Moments. There are of course numerous moments that can be developed however we will
give only relevant moments and give them in the order which gives the most insight into
pulse propagation. The calculations are given in the appendix. Consider first (w), k¢, the

instantaneous frequency for a given spatial point and spatial frequency at a given time,
(W)ekt = /wW(:c, k,t,w)dw (391)
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11 1 Os(x + 27,,t)  Os*(z — i1, 1) 1 .
- - = * __xt 2T _ 2T _:ct —]Txkdx
o7 2i {S (@ =37 1) ot ot S(@t 5T 1) | e dr
(392)

In the Appendix we give different expressions for this and other quantities. Now consider the

instantaneous frequency irrespective of spatial frequency. It is obtained by further integrating

Eq. (392) with respect to the spatial variable,
(W)pr = /wW(:L’, k,t,w) dwdk (393)

— [ (@ )asadt (394)

and this evaluates to

()2 = A2(a,1) 2 0(a, 1) (395)

which is the standard result for instantaneous frequency. Now consider (k). :.. Because of
the symmetry of our definitions one can readily write expressions for (k), . and (k). ;.

Position. The average position is similarly given by

(T)ptw = /1’ C(x, k,t,w)dx (396)
Z%% (S*(k,t — %T) 8S(k’§k+ 27 _ aS*Uféz_ %T>S(k;,t+ %T)) eI dr
(397)
We now average further to obtain the average position for given wave number,
(T )gs = /:L’C(x,k,t,w) dx dw (398)
= B%(k,t) a%w(k, t) (399)
We now further average to obtain
(x) = /Bz(k:,t) %1&(/@15) dk (400)
Covariance. We now consider the covariance. In the appendix we show
)y = A2(z, 1) 221D 00, ) (401)

ot oz
Calculation tool and physical interpretation. One can think of 2¢(z,t) and Zp(z,t) as the

frequency and spatial frequency in the x,t representation. That is we associate

0
w — a(p(aj, t) (402)
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0
k — %gp(x, t) (403)

Using this idea, answers can generally be written down immediately without recourse to

calculations. For example, suppose we want (k). , then we can immediately write

(K)o = A*(z, t)%so(ff, t) (404)

The same viewpoint can be taken in the spectral domain. In the spectral domain

0
TR (k,w) (405)
t — —%w(k,w) (406)

Suppose, that we want to calculate (xt)y ,,, we simply write

O (k, w) Ok, w)
ok Ow

(xt)),, = B*(k,w) (407)

Using this method we have the following results. They can be checked independently by

direct calculation. The local covariance of frequency and spatial frequency is

Cova(hw) = A%(, 1) (a“)g;’t) Wéi’ H_ a“”gjt) _ Wéi’ t>) (408)

and
Cov(kw) = / / A2(z, 1) (a¢éj’t) a‘PéZ’ b _ as”g’;’t) _ a¢éi’ t)) de dt (409)

Also
() = B2k, w) 2L ) OV (K, w) (410)

Oow ok

9.3 Application to Pulse Propagation

The above results are general. We now specialize to the pulse propagation case. Pulse

propagation is imposed when we take

S(k,t) = S(k,0) e Wk (411)
— B(]f, O)eiw(k,O)—iW(k)t (412)
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or

B(k,t) = B(k,0) (413)
(k) = Uk, 0) = W (Rt (414)
Consider
2 0 !
(¥)ktw = |B(k,0)| [—% (k,0) +W (l{;)t} d(w — W(k)) (415)
= Bk, 0)[? | (@), + W' ()| 0w = W(K)) (416)

This is an interesting result and can be interpreted as follows. The average of the pulse
at a certain frequency, spatial frequency, and time, varies linearly with time and with a
velocity equal to v(k); but the only frequencies allowed are those given by w — W (k), that is
those that satisfy the dispersion relation. Of course this is intuitively obvious but we have

developed the mathematics to describe the situation. If we average over all frequencies, then

(s = [ (@nswds = BIOP )y + olk)] (117)

This is exactly the result obtained in previously using the two dimensional Wigner distrib-

ution. Also, further integration over spatial frequency gives

(x)y = /(x>kt dw = / |B(k,0)[? [(:E)m + v(k)t} dw (418)

= () + (v(k))t (419)
= (), + Vit (420)

which is Eq. (51). But here we have obtained it in a very direct manner. Now consider
(Tt
s = [(@raadi= [IBIOP [(a)y + o] 80 = WD R (a21)

To simplify this we assume that the solution to the equation w — W(k) = 0 is k = K(w).

Then

a9
()10 = <%&f) - t) | B(K, 0)|*k=g(w) (422)

and this can be similarly interpreted.
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10 Examples

10.1 Spread, contraction time, etc. for: u(z,0) = (o/7)"/* e=0w?/2+i0a*/2+ikox

In this example all quantities can be solved for exactly and hence offers a good case for

verifying the results we have obtained. For the dispersion relation we take

W (k) = ck +vk*/2 (423)
and the initial pulse is taken to be,
u(:c, 0) _ (04/71')1/4 e—ax2/2+iﬁm2/2+ikox (424)
We define
n=o—1i3 (425)
so that
w(z,0) = (oufm) /4 =" /2 +ikox (426)
and also, for convenience we define
, Q@
= 42
RRNCEEED 0
/ p
-7 428
The initial spectrum is calculated as follows,
1 .
S(k,0) = — [ u(z,0) e * dx 429
(0 = —= [ulz.0 (429)
1/4 ARY
— L o [T (430)
Vi 2n
1/4 2 2
_ (" {—O‘(k ko) _ Bk = ko) } (431)
a—ip 20+ %) 2(a*+5?)
_ (04/7T)1/4 o~ (k—ko)?/2=i3' (k—ko)? /2 (432)
a—1f3
and the time dependent spectrum is therefore
S(k,t) = S(k,0) e Wk (433)
(c/m)! { (k —ko)* 2 ]
=————exp|————— —i(ck+yk*/2)t 434
o o — ilek 98 2) (134)
(a/m)/4 alk — ko) Bk —ko) 9
— — — —i(ck +~vk*/2)t 4
7 | s ety (RHINY) (435)
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At the initial time, t = 0, the mean and standard deviations of = and k are

()0 =0 (436)
(k)o=ko (437)
1
a? + 32
o 13\0 = on (439)
Also the covariance is
Covyy = % (440)

The moments are calculated very simply from the time dependent spectrum. The average

group velocity and averaged square are

(v)=rc+ ko (441)
() =P (e ko (442)

and therefore the standard deviation of group velocity is

oy = (vg) — (v)* (443)
2 | ;32
_ 20+ f
=7 "%, (444)
Hence
(2 )= (c+ko)t (445)
1
() = 5 (14 B7t)* +7%a* %] + (¢ + ko) *t° (446)
and the spread is
Ug|t = Ug|0 (14287t +7%(a + %) 7] (447)
_ 2 R p0F +
= o0 + 2t 50, +toy —5a (448)
1
= 5o (L4287t +7°(” + %) ¢ (449)
1
=5 (14 B871)* +~%a* ] (450)
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It is also interesting to write o, in terms of oy

ﬁu:UﬁJ1+2ﬂﬁ+72<

1
4%\0

+ ﬁ2> t2] (451)

- p
= oy |1+ 267t + 720%'09] (452)
z|0

The reason this point is important is that it shows that the spread in time is not a linear
function of the original spread. So for example if we make the initial spread very small the
spread in time will relatively increase. This may be counterintuitive but it is correct and is

a reflection of the uncertainty principle.

Contraction and Spread. The pulse will contract for times

26 ____F (453)

- = ¢ —
v(a?+ 5% Y e+ )
This can only happen if either « or 3 are less than zero, but not both. The minimum width

tc <

is )
2

2
Oxltayr — 9200 = Ozl0
|t | 0.12) a2+ 32 |

(454)

Note that 3 determines whether the pulse will contract and it has to be negative for con-
traction. Also note that the covariance is negative for negative (.
One can also obtain the value of § that will maximize the time of contraction. That will

be the case when a = (3

1 11
to < —— ty = ——— = —t 455

1

2 _ 1
Oaltrr = 20-90\150

and
(456)

Thus, the pulse cannot get any narrower than half of its original width.

10.1.1 Exact Solution

Our approach has allowed us to calculate the above quantities exactly and the calculations
have all been done simply and using only the initial pulse and spectrum. That is the
advantage of our method. It is now interesting to verify these with the exact solution for

the pulse. To obtain the exact solution we calculate,

w(z, ) = % / Sk, et (457)

_ L (amptp k=R ? ikz
- / p[ > (ck + k2 /2)t + ik (458)
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This integral can be done but the answer turns out very complicated. We have found that

by making a simple transformation first one gets a more tractable answer. In particular

letting kK — k + ko we have

1 1/4 e
u(z,t) = \/T% /exp oy i[e(k + ko) + v (k + ko)?/2)t +i(k + ko)x] (459)
T L
1 1/4 [ 1
= \/—Q_ﬂ'% /exp —kz(% + iyt /2) +ik(x — ct — ykot) — i(cko + vko?/2)t + ikox}
(460)
1 1/4 T2 1
= —QW% /exp —%(1 +inyt) + ik(z — ct — ykot) + iko(x — ct) — ivkot/2
(461)
1 1/4 72 1
= E% /exp —%(1 +inyt) + ik(z — ct — ykot) + iko(x — ct) — ivkot/2
(462)
Carrying out the integration one obtains
(a/m)/4 n(z —ct — kgyt)? s
t) = —— —= ko(z — ct) —ivkst/2 463
U(ZIZ’, ) \/mex 9 1_'_7'777t + ()(ZIZ' C) YKo / ( )
Using the fact that
1+iynt =14+ y6t +ivyat (464)
we have that
11 +iynt]? = (14 B~t)* + 2’ (465)
= 2aa§‘t (466)
Therefore
(a/m)/4 n(x — ct — koyt)? . . 9
t) = ———— —= 1 t— t k —ct) —ivkgt/2
u(zx,t) NigmerT exp | —3 2““5@ (1 + 0t — iyat) + iko(xz — ct) — ivkat/
(467)
Also,
n(l —iynt) = (a —iB)(1 + Bt —ivat) (468)
= a —if —ivt(a® + ?) (469)
and hence
(/)4 (x — ct — koyt)? T . _—
)= ~L—2 - — i — it ko(x — ct) — ivk2t/2
u(z, t) e exp foo?, o — i — ivt(a® + 57)] + iko(x — ct) —ivkgt/
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This allows one to express the answer in terms of phase and amplitude

_ (z — (z)¢)?
ue(w,t) = (27T0-§|t)1/4 exp [— 4U§|t ]
exp [z (z = (2))" {5 i (o + 5t} | iko(z — ct) — ik2yt/2 — 0 (471)
4aam|t
where ) .
_ ay
J= 3 arctan 5 Gt (472)
The amplitude and phase are
_ 2
e, 01 = (g O —%} (173)
oo = {20 iﬁ; (4TI | ety — k22— 6 (474)
x|t
_ Bla—(z))? | (@—(x))*(a®+ )t
— 40«7:%“ + 4(10:%“ +ko(z —ct) —kiyt/2 -8 (475)
_ 2 2 | 2
- DI IND | poa— () + Kirt/2 - 8 (476)
x|t
= o= (@) gk oo = (2)0) + Krt/2 =8 (477)

We also note that the above can be simplified in a different way if one uses
r—ct=x—(x)+ kot (478)
(x—ct)? = (z— (2))* +2(x — (2 ))koyt + kiy*t? (479)
10.1.2 Asymptotic Solution

It is also interesting to obtain the classical asymptotic approximation and to compare to the

exact result. We have that

W'(k) = c+~k (480)
W (k) =~ (481)
Setting
W'(k) =c+~vk =/t (482)
we have that ,
T —c
ks = 4
- (183)
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Now,
W (k) = ck +vk*/2

1
= Q—Wf(x —ct)(z + ct)

and also now which gives that

_(z—at)?
ksx — W (kg)t = ot
Also
ke — ko = ~—(z — ct — o)
s 0 — ’)/t xr & 07
1
= —(z— (7))
vyt
where

()= (c+koy)t

The asymptotic solution is

[1 _. (x — ct)?
~  pim/4 A
Uq(z,t) ~ S(ks,0) tfye exp {z 2 }

But
~ (afm)M (x — ct — koyt)?
S(k,0) 7 exp [— 2T }
_ (a/m)tt alz —ct — koyt)?  B(x — ct — kogyt)?
= | s

(484)

(485)

(486)

(487)

(488)

(489)

(490)

(491)

(492)

(04/77-)1/4 1 —im/
talst) ~ E=m\ e {_ 2+ )P 2(a? + B2
1 (a/m)?
S =
S —=(z))? (v —ct)?
Pa ~~ _/6 2’)/2t2 2’}/t
_—6/(5”—<95>t)2 (v — (7))
222 2t
1 1 '
=5l (2)0) {% - Vgtz} +hko(z = (a)0)

afr - (I%)z}

(o + 57202

a(x —ct —koyt)>  Blx —ct —kpyt)*  (z— ct)2]

(495)
(496)

(497)



where we have used

r—ct=x—(x)+ kot (498)
(x—ct)? = (z — (2))* +2(x — (2 ))koyt + kiy*t? (499)

10.1.3 Comparison of Exact with Asymptotic solution

We now compare the asymptotic solution with the exact. In comparing the magnitude of
the asymptotic solution with the exact we see that they are the same if we approximate the
conditional standard deviation for large times by keeping only the quadratic terms

Pt = 102 + P (500)

Whether this is a general feature of the asymptote solution needs further investigation. That
is, can the asymptotic solution be obtained in the following way:. write the parameters of
the initial pulse in terms of the initial position and initial spread and then substitute for
them the exact moments we have shown how to calculate. Is then the asymptotic solution

the one that is obtained when only the quadratic term in the spread is kept?

10.2 Example: u(z,0) = d(x)

Suppose we take an impulse at £ =0
u(z,0) = o(x) (501)

The initial spectrum is given by

S(k,0) = # (502)

We consider the case where the dispersion relation is given by

W (k) = ck +vk*/2 (503)
and hence 1
S(l{?, t) _ \/_2_7T€—i(ck+7k2/2)t (504)

ol



1 tkx
u(z,t) = \/—2_7T/S(k,t)e dk (505)

1 ik (x—ct)—iyk2t/2
- tk(x—ct)—1 dk
5 /e (506)
1 [2r (x — ct)?
1 (x — ct)?
=\ 2ring P {W} (508)
The exact phase is therefore
(v — ct)?
) =7 509
olo.t) = (509)
and the exact instantaneous frequency is
0
(x—ct) (x—ct)?
= 11
c o + N (511)
(x —zg — ct)
0 9 -
G 2ct + (z — ct)] (512)
(x — ct)(x + ct)
= 1
ot (513)
and the exact spatial instantaneous frequency
0
ki(x,t) = a—xap(x,t) (514)
_ (x — ct) (515)
vt
We now obtain the asymptotic solution. Using
T —ct
ks = 516
- (516)
1
W(ks) = ﬁ(z —ct)(z + ct) (517)
(x — ct)?
ksx — W (ks)t = ———— 518
r Wkt = S (515)
we have
1 iksx—iW (ks)t—imsgn K" /4
ua(xvt) ~ S(k870) tW”(ks)e (o)t ¢ / (519)
1 1, 2o
_ tks(x—ct)—vkit/2—imy/4
=—/—e 520
Vor Vot (520)
1 (x — ct)?
-V i2myt P {ZT} (521)

52



But

(x — ct)?
oz, t) = ———— 522
ol t) = 2 (522)
The relation between exact and asymptotic is
Pa(z,t) = @(z,1) (523)
The instantaneous frequency (asymptotic) is therefore
wi(z,t)  (asymptotic) = w;(x,t)  (exact) (524)
Now let us use the equation from the text to derive the instantaneous frequency,
x dvy
let) = s G+ Wk (525)
We note that a0
=0 526
dk. (526)
and therefore
wi(x,t) = W(ks) (527)
1
= W(:c —ct)(x + ct) (528)
Also
1 dy
ki(x,t) = ———— + ks 2
@0 = ey dk, (529)
= ks (530)
—ct
_le=d) (531)
vyt

Which agrees with the above

10.3 Example: u(z,0) = 0(x — x¢)

The reason we consider this example, even though we have just done d(x) will become

apparent
u(z,0) = d(x — xp) (532)
The initial spectrum is given by
1 .
S(k,0) = ——=e ko 533
(10) = ——= (533)



and hence
S(]{Z, t) — 1 e—ikxo—i(ck+~/k2/2)t

V2r

1 ikx
u(z,t) = \/—2_7T/S(k,t)e dk

_ i eik(x—xo—ct)—i'\/k2t/2dk
2T
1 [2r (x —x9 — ct)?
= _—/—exp |i—————
2m \ it 27t

1 (x —x9 — ct)?
= exp | i—————
2miyt P 2t

(534)
(535)
(536)
(537)

(538)

Which of course could have been written down immediately since the solution is translation

invariant. The exact phase is therefore
(x — mg — ct)?
27t

and we can write down the answers immediately by letting z — = — x

p(z,t) =

3}
wi(xvt) = _E(p('xvt)
(x — zg — ct)(x — x¢ + ct)
N 2t?

and the exact spatial instantaneous frequency is

0
(xr —xo —ct)
— —vt

But now we obtain the asymptotic solution. Using

k= T —ct
vyt
1
s) — S o —ct t
(ks) 2%2(::: ct)(z + ct)
— t2
kow — W (ks)t = - 27(; :
1 tksx—i —imsgn K"
uq(z,t) ~ S(ks, 0) Gk )eks W (ks)t—imsgn K" /4

eiks (x—ct)—~k2t/2—iny/4

I
5|
=)

Q)

L
o
8

o

=

(x—ct)> x—ct
=4/ exp |i —i To
2t vt

(539)

(540)

(541)

(542)

(543)

(544)
(545)

(546)

(547)

(548)

(549)



But

— ct)? —ct

ulznt) = (x — ct) B Cxo
2t vt

(x — ct — 1g)? — 3>

2t

(550)

(551)

Thus we see that one can not get the asymptotic solution form the previous case by letting

xr — x — xo. The relation between exact and asymptotic is

x>
Pa(z,t) = p(x,t) — B
The instantaneous frequency (asymptotic) is therefore
702

wi(z,t)  (asymptotic) = w;(z,1t) (exact) — Y
v

ki(z,t)  (asymptotic) = k;(x,t) (exact)

Now let us use

x dvy
o) = Wk,
o) = oty ar, T k)
to derive the instantaneous frequency. We note that
dp
dk,

and therefore

wi(x,t) = i(—xo) + Wi(ks)  (asymptotic)

27y
1 Txo

But

(x —ct)(z +ct) = (v — 20 — ct)(x — 39 + ct) — 3 + 2310

and therefore

1 TXo
1 1'02
:W(l'—xo—ct)(l'—l'()“‘ct)— W

which is the same as Eq. (552). Also,

25

(552)

(553)

(554)

(555)

(556)

(557)

(558)

(559)

(560)

(561)



Ly,

1 x —ct
= %(—xo) + " (563)
_rom—d (564)
vyt

which agrees with the above.
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10.4 Example: u(z,0) = etkox

Suppose at z = 0 we take

The initial spectrum is given by
S(k,0) =0(k — ko)
We consider the case where the dispersion relation is given by
W (k) = ck +vk*/2
The time dependent spectrum is
S(k,t) = 0k — ko)e ek 1K/

and the exact answer is

1 ikx
u(zx,t) = \/—2_7T/S(k,t)ek dk

1
= —c¢

V2

—i(cko+vk3 /2)t+ikox

The exact phase is therefore
o(x,t) = —(cko + kg /2)t + kox
and the exact instantaneous frequency is
0
ACS! t) = —— 7t
il 1) =~ ol )

= Ck‘o + ’}//{?8/2
=Wi(ko) (exact)

and the exact spatial instantaneous frequency is

ki(xz,t) =ko  (exact)

We now obtain the asymptotic solution. From before we have that

kszx—ct
vyt

(x — ct)?

kex — W(k)t = ———
v ( ) 27t

(565)

(566)

(567)

(568)

(569)

(570)

(571)

(572)

(573)
(574)

(575)

(576)

(577)



and therefore

1 tksz—iW (kg)t—imsgn K"
uq(,t) ~ S(ks, 0) W) (bt msen K01 (578)
1 1 (z — ct)z]
= —0(ks — ko)y/ —exp |i—— 579
7o ks = Koy exp [ 21 (579)
1 x—ct 1 ,(x—ct)Z}
= —§(—— —ko)y/ —exp |[i———— 580
A TR p[ 21 o0
1 (x — ct)2]
= —0(x — ct — vtk texp |i———— 581
Tl = ct =kt |1 (581)
and therefore the asymptotic phase is
(v — ct)?
a,l) = —5— 2
polet) = (552)
= kit/2 (583)

The instantaneous frequency (asymptotic) is (note that we must differentiate Eq. (582) and
not Eq. (583)

(x—ct) (z—ct)?

wi(x,t) =c o + R (asymptotic) (584)
 (z—ct)  (x—ct)?
=T (585)
2z —ct)et + (x —ct)?
— > (586)
_(z—ct)(x+ ct)
-t (587)
= W (k) (588)
= W (ko) (589)

and for this case we have that the exact equals the asymptotic. Also,

ki(z,t) =c¢ (@ _tCt) (asymptotic) (590)
v
=cks, (asymptotic) (591)
= ck; (592)
Now we use a0
x
() = ks
wi(x,t) k) dk. + Wi(ks) (593)
and using
dip
= 4
a5 0 (594)
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we have

wi(z,t) =W(ks)  (asymptotic)

= W (ko)
Which is the same as Eq. (574).
Also
1 dy
ki 7t = ST s )
(x,t) 7 (k) dk, + ks  (asymptotic)
— k.

29

(595)
(596)

(597)

(598)
(599)



10.5 Example: u(zx,0) = e/0"/2+ikor

At t = 0 we take
U(SL’, 0) — ei,@mz/2+ikox (600)

The initial spectrum is given by

5(k,0) = \g exp |- 10 (601)

We consider the case where the dispersion relation is given by

W (k) = ck + 7k*/2 (602)
and hence
; 2
S(k,t) = \/%exp [—Z% — iW(l{;)t] (603)
u(w,t) = \/% S(k,t)e” (604)
T
(e — )2
= \/—;_W \/—1—zﬁ /exp i% —i(ck + vk*/2)t + Zk‘:c] (605)
- 2
- —;T _11»5 /eXp —z% —ile(k + ko) + y(k + ko) /2]t + i(k + ko)x] (606)
B —; 1zﬂ /eXp _kz(_% +it/2) + ik(x — ct — ykot) — i(cko + vko /2)t + ikox}
7T - L
(607)
1 1 [ k2
=~ o —ye /exp 25(1 + ifyt) + ik(x — ct — ykot) + iko(x — ct) — iyko t/g}
(608)
1 1 LS : , .9
= oIV /exp —Zﬁ(l + Bt) + ik(x — ct — ykot) + iko(x — ct) — ivko t/g]
(609)
_ 1 Bz —ct —kgyt)? o
R exp {25 e + tko(x — ct) — ivkgt/2 (610)
The exact phase is therefore
— ct — kogyt)?
p(x,1) = g(x 1C+76§7 ) + ko(z — ct) —7k§t/2 (611)
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and the exact instantaneous frequency is

wi(z,t) = —Qw(x, t)

ot
B Blx —ct —koyt) = B*(x —ct — koyt)? 2
= (¢ + ko) =D v S0+ )2 + koc + k5 /2
Bz —ct — koyt) B(x — ct — koyt) 9
S ey (c+ koy) + 200 + koc + k2 /2

and the exact spatial instantaneous frequency is

B(x — ct — kot)
(1+76t)

Thus it still remains a chirp but with a different chirp rate.

kl(l',t> = +l{30

We now obtain the asymptotic solution. We have that

b — xr —ct
s — ’}/t
(z — ct)(z + ct)
ky) =
W (ks) 22
b = T kot
S 0 fyt
(- ct)?
ksz — W (ks)t = Ty
and therefore
1 thsT—1 Nt—imsgn K/
ug(z,t) ~ S(ks,0) We kesz—iW (ks)t—imsgn K" /4

] 2
= i exp {_Z‘M} ieiks(x—ct)—ykgt/z—mﬂ
5} 203 V ot

/1 (x —ct —ytho)?  (z — ct)?
Ve T { T T

where we have used the fact that

- 1
—im/4
e RS
\/7_;
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(612)
(613)

(614)

(615)

(616)

(617)
(618)

(619)

(620)

(621)

(622)

(623)



and therefore the asymptotic phase is

o — 2 2
ol t) = — (x — ct — ~ytky) (x — ct)
25v%t? 2t
_ Pt(x —ct)? — (z — ct — ythko)?

20372t

(2 — ct)?(Byt — 1) + 2(x — ct)ythy — (ytko)?

26~2t?

_ (r—ct —tho)® | (x—ct —tho)? | ko
257 i + 5 + (z — ct — ytko)ko
T di
wi(z,t) = PW(k,) dk, + W(ks)
We note that
di) _ (k — ko)
dk 5
_ r—c- koyt
pyt

and therefore

x x—ct— koyt

(x —ct)(x + ct)

wi(z,t) = _7t 5 5 e (asymptotic)
 x—ct =kt (v —ct)(x+ct)
67%3 2fyt2
Also,
1 dy .
ki(z,t) = (k) di + ks  (asymptotic)
_x—ct—koyt w—ct
Bry*t? vt
x—ct —koyt x —ct— kot
_ oY oY + ko
o2t gl
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(625)
(626)

(627)

(628)

(629)

(630)

(631)

(632)

(633)
(634)

(635)



10.6 Example: u(0,t) = ™o

We consider the case where the dispersion relation is given by

K(w) = yw?/2 (636)
and at z =0
u(0,t) = ™ot (637)
Its spectrum is
F(w,0) = V21 (w — wy) (638)
and hence,
F(w, ) = V218(w — wp)e 1< #/2 (639)

and therefore

1 iwt
u(z,t) = \/—2_7T/F(w,x)e dw (640)

_ e—i*ng:c/Q-i-ijt (641)

and we see that the phase is given by

o(x,t) = —ywiz/2 + wet (642)
which gives
wi(z,t) = 9 (z,t) (643)
AET gt
= w (644)

and the spatial local frequency by

ki(z,t) = —%gp(m,t) (645)
— )2 (646)

We now use the equations derived for the asymptotic answer. We have to first obtain wy

K'(ws) =t/r = yws (647)
and hence .
ws = o (648)
Further for our case we have that o0
Evi 0 (649)



Now

1 o
wl(x7t) K//( )aw _I_
_t
- o
and also
t dy
ki(x7 t) - LU2K//( )dws + K((A)s)

= K(WS)
= yw?/2
_
Y

(650)

(651)

(652)

(653)
(654)

(655)

and we see the answers do not agree. We now explore why this should be case. Consider

the asymptotic signal itself

]_ : : : "
" )~ F 0 iwt—iK (w)x—irsgn K /4 —
u (':C7 ) (w7 ) xK//(Q))e | =Ws
Let us first work out that
t2
wt — K(w)zx = —
2vx
and here the asymptotic solution is
]_ : : : "
" )~ F 0 iwt—iK (w)x—irsgn K /4 e
u ('Z'? ) (w7 ) .,'L'K”(CU) | —Ws

t 1 12
= V2mo(— —wp)y/ — exp |i—
YT Ty 2vx

Hence because of the delta function we now obtain

t
i 7t = =
wi(, ) o Wo
and also
vt
k‘i ,t -
(z,1) o
:’YQWO
2

(656)

(657)

(658)

(659)

(660)

(661)

(662)

which still does not agree with the correct answer. However if we take the asymptotic signal

and rewrite it as

tal8) ~ V_a——wo\/g {2%}
B \/_5 e \/Texp { 2%‘]
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then one would get the right answer if one differentiates the phase. What this example shows
is that a further clarification is needed when one deals with delta functions. In particular
for this case it is not clear which should be done first, the delta function substitution or the

differentiations.

65



10.7 Example: u(0,t) = (¢t — to)

Suppose we take an impulse at £ =0
u(0,t) = (t — to)

The initial spectrum is given by

F(w,0) = ——=e ™t
(@,0)= —=
and hence .
F w, ) = e—iﬁ/wzm/2—iwto
(@, 2) = -
the exact answer is
(0.0) = —— [ Flw.a)e*!d
u(x,t) = — w, x)e“ dw
V2T
— QL e—i'yw2m/2—iw(to—t)dw
T
1 [2r (t —tg)?
=—\/—exp|i
2\ iyx 2vx
and we see that the phase is given by
(t —ty)?

which gives

0
WZ‘(SL’, t) = E@(l‘? t)

and the spatial local frequency by

ki(x,t) = —%gp(x,t)
(t —tg)*

2yx?

We now use the formulas derived in the text

K'(ws) =t/ = yw,
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(666)

(667)

(668)

(669)

(670)

(671)

(672)

(673)

(674)

(675)

(676)



and hence

t
W = —
v
2 t?
Now
p(w,0 »
ow
and hence
1 oy
1 ) t a S
wil, ) K" (w) Ow -
1 t
= (to) +
Ty v
t—t )
= (asymptotic)
v
which is the same as the exact.
t dv
k‘i ,t - K s
(z,1) 22 K" (ws) dwy + K(ws)
t t2
= —(—t
x27( o) + 2yx?
P —tty
2~y x?
consider the asymptotic signal itself.
1
ug(z,t) ~ F(w,0) K@)
Let us first work out that
t2
t— K = —
w (w)x oo
and here the asymptotic solution is
(0,8) ~ F(w,0) | —
Ug(,t) ~ F(w,
K" (w)
1 1 t2 t
= ——/— [i— — —to]

67

iwt—iK (w)z—imsgn K”/4|
w=ws

(677)

(678)

(679)

(680)
(681)

(682)

(683)
(684)

(685)

(686)

(687)

(6883)

(689)



10.8 Example: u(0,t) = (a/m)"/4 gm0t /24wt

For the signal

w(0,t) = (o)) /4ot 2Hiwot (690)
the initial special spectrum is
a/m) /4 w — wp)?
F(w) = % exp {—%} (691)

and the exact solution is

(o) M4 1

2 ; wo
wy (it +=2)
1) = 0 T e 692
The phase and amplitude are
—yxt? — wot/a? + weyzr/a? 1 2yx
o(z,t) = + — arctan — (693)
4 [(52)? + 7222 2 a
242
—yrat® —wot +woyr 1 2vx
= Ewre + 5 arctan o (694)
fu(z, )] = (a/m)4/4 1 2 exp —la 2 — dwoyz(t — woyz) (695)
’ V2a a4+ a2 2 1 + 4a?y2a2
This gives
wo + 202yt
1) = 2T 696
wi@,?) 1+ 4a2~2x? (696)

This is a chirp even though a pure sine wave is being generated at x = 0. In fact, even for

w = 0 we have a chirp.
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10.9 Example: u(0,t) = e/t*/2+iwot

We take
u(0,1) = ¢/l

F(w,0) = \@ exp {_%}
Flo,z) = \/% exp [—Z% = mﬂx/z}

zwtdw

which is a chirp. We have

and hence,

and therefore

u(zx,t) =

7= e

=4 /ﬁ/ exp -—z'% — i7w2x/2 + iwt] dw
=4 /ﬁ/ exp -—z;u—; — iy(w + wo)?z/2 + i(w + WO)t} dw

) B 2
_ WP - o
= 27rﬁ/ exp _ 226(1+57x)+zw(t vax) zywox/2+zw0t} dw

[ Bt —ywoex)? ., .
= 1T ﬁ'ygj exXp {ZW — Z”ywox/Q + Zu)ol{|

and we see that the phase is given by

B(t — ywox)?

— wiyz/2 t
20T A weyT /2 + wo

p(z,t) =

which gives

and the spatial local frequency by

0
ki(za t) = _%QP(IL', t)

B(t — ywor)
(1+ pyzx)

B(t — ywox)?
(1+ Byzx)?

+ By — ywp/2
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We now compare to the asymptotic solution. We have

t
K'(w)=yw = " (710)
and that gives .
W= o (711)
Therefore,
t (B/m)* { (t— vwow)T
Flwow=—)=—F—F— exp | ———5——+— 712
w=3) VB ghtat (712)
and hence ( . ,
B 1 At — ywox ot ,
u(z,t) = oo exp [ i 3222 + Z2fyx zwsgn7/4] (713)
This gives an instantaneous frequency
t
w; = fy_x (714)

10.10 Example: u(0,t) (a/w)l/‘le—af2/2+iﬁt2/2+z’wot

This example is mathematically identical to the example previously considered and hence

we do not give the details but just the results. We take

K(w) = Dw + yw?/2 (715)
and the initial pulse is taken to be,
U(O, t) _ (a/ﬂ‘)l/4 6—at2/2+i5t2/2+iwot (716)
Defining
n=aoa—1ij (717)
so that
w(0,) = (a/m)/ 4 e /2wl (718)
and where as before
, Q@
- 719
YT e ) (79)
p
' = 720
TNy (720
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The initial spectrum is

F(w,0) = \/%7 /u(O,t) et gt

g

Vi
_ (a/m)'

aw — Wo)2 Bw— w0)2

T Va—ipg P {_2(a2+ﬁ2) YD

1/4
_ (a/m) / o=@ (w=w0)? /2=if (w—wo)? /2
a—1f3
and further

F(w,z) = F(w,0) e”KWe

a/m)H4 w—uwy)? . 9
= % exp [—% — i(Dw + yw*/2)z
(a/m)V/A alw—w)?  Blw—wy)? . 5
= Vo= &P [_2(09 TP gy (Dwtae /e

At the initial position, x = 0, the mean and standard deviations of ¢ and w are

(tho=0

(w)o = wo

1

2 e

Ut|0 - 20(
@0 9y

and also

COVtT = ﬁ
2a

The average transit time and averaged square are

(1) =D + ywy
<7_2>: 2a2—|—ﬁ2

2a
and therefore the standard deviation of transit time is

— (D + ywp)®

ot = (%) — (r)’
,a? + (32
(6%
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(721)
(722)
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(724)

(725)

(726)

(727)

(728)
(729)

(730)

(731)

(732)

(733)

(734)

(735)

(736)



Hence

(t)e =(D+ywo)x (737)
(12), = % (142872 +72(0% + 37 22] + (D +7wo)? 2 (738)

and the spread is
ore = 0o [1+ 2872 + 7% (a” 4 %) 27 (739)

B 2 2042+62

= o2, 4+ 202 4
Oiio + :):2a+:)37 50 (740)
1
= o (1426872 +~%(a? + %) 2°] (741)
1
=50 [(1+ By2)® +~°a”2?) (742)
Also,
o, = 0ito |1+ 2087z ++° < ot 62) x2] (743)
i Ttlo
- 2
= 02, |1+ 207z + 42207 (744)
i %o
Contraction and Spread. The pulse will contract for positions
20 &
< - Ty =—-——-— 745
CE T T e ) ()

This can only happen if either « or 3 are less than zero, but not both. The minimum width
is )
_ o, Covip o,
Ttlary = Otlo — o2 T a2+ 32 Ttlo

(746)

One can also obtain the value of # that will maximize the time of contraction. That will

be the case when o = (3

1 1 1

e I (147)
and )
Uﬁw = §Ut2|mo (748)

Ezact Solution. To obtain the exact solution we calculate,

1 wt
u(t,x) = E/F(w,x)e (749)

1 M ex —M—i w w2/ x + iw
_ - / p[ - (Dw +72/2)e +iwt|  (750)

9
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and hence

2
u(t,x) = \/—_ \/_ / —;}7 —i[D(w + wp) +7(w+w0)2/2]:):+z'(w+wo)t} (751)
[ 1
= \/—_ \/_ / —w2(% +iyx/2) + iw(t — Dz — ywor) — i(Dwy + ywo?/2)x + iwot]
(752)
)4 2 .
= \/—_ /exp %(1 +inyx) 4+ iw(t — Dz — ywox) + iwe(t — Dx) — iywy’x/2
(753)
1 1/4 T2 .
= 1 la/m 7 exp —w—(l +inyr) + iw(t — Dx — ywox) + iwg(t — Dx) — iywo /2
V2m /M | 27 i
(754)
Carrying out the integration one obtains
ofm)4 t — Dx — wyyz)? ,
u(t,x) = %27771' ex [—g( = WU;V ) + iwo(t — Dx) — iywiz/2 (755)
Using
1 +iynx = 14+ yf0x + iyax (756)
we have that
1+ iynz]? = (1 + Bya)? +y°a’ 2? (757)
= 2a07, (758)
Therefore
(a)m)/4 n(t — Dz — wyyx)? . : 9
t — VA . 1 — t— Dx)— 2
u(t, x) NiEoT exp | =3 Y007, (1 + 0z — iyax) + iwo( x) — iywiz/
(759)
Also,
n(l —iynz) = (a —iB)(1 + yBz — iyax) (760)
=a —if —iyz(a® + 5% (761)
and hence
(a/ﬁ)l/4 (t — Dz — W075L’)2 . . 2 2 . L2
u(t,r) = ————=exp |— la —if —iyz(a® 4+ B7)] + iwo(t — Dx) — iywiz/2
Vv1+iynz 4aat|x 0
(762)
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and also,

2
4at|m

1 (t—(t)a)?
ue(t, x) = W exp [—7]

exp 40‘0}2@ + iwo(t — Dx) — iwi yx /2 — 46

[Z. (t = (t)o)* {5 + (o + B)ya)

where
0= 1arctam it
2 1+ By
The amplitude and phase are
_ 1 (t —(t)a)?
|Ue(t7 5(7>| - W exp th‘x
_ 2 2 2
B G (5l (S Lo W PSR
4aat|x
_BlE—(t)e)® | (= (1))’ (0 + %)y 2
= 404%2@ + 40“7,&2@ +wo(t — Dx) —wiyz/2 — 0
(t = (t)a)* {8+ (a® + B°)ya}
= 1007, wolt = (t)a) +wirw/2 =0
1 5 d

= E(t— (t)z) T lnaf‘x +wolt — {t)y) +wiyw/2 -6

We also note that the above can be simplified in different ways if one uses

t—Dxr=t—(t), +woyz
(t = Dx)* = (t = (t)o)* +2(t — (t)o)wore + wyy’a?

Asymptotic Solution. We have that

W' (w)=D+yw

W (w) =~
Setting
W (w)=D+yw=t/z
we obtain
t— Dx
W, =
v
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(765)
(766)
(767)
(768)

(769)

(770)
(771)

(772)
(773)

(774)

(775)



Now,

K(w) = Dw + yw?/2 (776)
:5%&—D@Q+D@ (777)
and also (t — D)
wit — K(wy)r = 27:;6 (778)
In addition
Ws — Wp = %(t — Dz — woyx) (779)
1
= (t=(t)) (780)
where
(t)e=(D+woy)z (781)
The asymptotic solution is
ua(t, ) ~ F(ws, O)\/ge_”/A‘ exp [Z t _25;:)2} (782)
But
 (afm)M (t — Dx — wyyz)?
F(w,0) NG exp [— 2 } (783)
_ (afm)tt a(t — Dz —wyyx)?  B(t — Dx — wyryz)?
i | |
and therefore
(a/m)"* [T a(t — Dz —wyyx)?  B(t — Dx — woyz)?  (t — Dx)?
Uq(t, ) ~ Voo %e *exp {— 2+ P i 2(a2 + B2)72a2 2y
(785)
_ 1 (o/m)'” aft — (t).)?
[ua(t, 2))* = o Ve exp [—m} (786)
- 2 - D 2
TN oo
_ 2 _ 2
_ gl 272?;) (t 2<W>~"‘) +wn(t = (1)) + 5w0ra (788)
e | = P = ()0 + L (789)
2 olyr 222 0 ) T %7

|



where we have used

t—Dxr=t—(t), +woyz (790)
(t— Dx)* = (t — (t),)? +2(t — (t))woyz + wivy’a® (791)

11 Future Research

There are a number of directions that the above idea of pulse propagation should be extended
to.

1. The case with damping should be investigated and the formalism developed here
should be extended to handle that case.

2. Can these methods presented be generalized to equations with non-constant coeffi-
cients?

3. The Gabor procedure for a pulse needs investigation. That is a proper analysis of the
concept of an analytic signal for a pulse has not been done.

4. Instantaneous frequency and local spatial frequency have been obtained for the as-
ymptotic solution. One should try to improve on this.

5. Exact calculation of moments. We have shown that the moments can be calculated

exactly and easily. Can these moments be used to construct a better approximation than the

classical asymptotic approximation? That is construct an approximation to |u(z,t)|* and in
particular

Find an approximation to: |u(z,t)[* Given : (792)

u(x,0) and (793)

(") n=1,N (794)

There are many methods to construct densities from a given set of moments and it would be
interesting to apply these methods. Note that in this formulation one would only approxi-
mate |u(z,t)|* , that is the magnitude. But if we add to this the time moments, then it may
be possible to also get the phase to a better approximation.
6. Can the methods and models developed here by applied to nonlinear wave equations?
7. The accuracy of the Wigner approximation scheme needs further investigation.

8. Can one obtain equations of motion for the amplitude and phase separately? We write
u(x,t) = R(x,t)e®! (795)
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We have been able to show that

OR 1 N

—gt =% Imu*(z, )W (K)u(z,t) (796)
e 1 .

%= s Reu*(z, )W (K)u(x,t) (797)

Can these equations be solved directly for phase and amplitude?

9. The Wigner distribution approach should be generalized to other distributions \cite{cohen66,rev,bool
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A Appendix: Notation for Part A

k Spatial Frequency (wave number)
w Frequency
u(zw,t) = A(x,t)e?@?) Pulse at position x and time ¢
Az, t), o(x,t) Amplitude and phase of pulse
w=W(k) Dispersion relation
v(k) = W'(k) Group velocity
u(x, t) = \/LZ? [ S(k,0) ekz=iWk) g, General solution for a pulse
S(k,0) = o= [u(x,0) e dz Spatial spectrum at time zero
S(k,t) = S(k,0) e”W k) Spatial spectrum at time t
= \/% [ u(z,t) em** dx Spatial spectrum at time t
S(k,t) = B(k,t)e??k?) Spatial spectrum in terms of amplitude and phase
B(k,t), v(k,t) Amplitude and phase of spatial spectrum
X =1 % position operator in k£ space
(z™)y = [ 2™ |u(z,t))* dz Spatial moments of a pulse at time ¢
V = [wv(k)|S(k,0)]*dk Average group velocity
o2 Standard deviation of group velocity
Covut Covariance of position and group velocity at time ¢
P Correlation coeflicient
to Time of contraction
tm Time at minimum contraction
wi(z,t) = —2o(z,t) Instantaneous frequency
ki(x,t) = %ap(m, t) Local spatial frequency
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B Appendix: Notation for Part B

k Spatial Frequency (wave number)
w Frequency

u(xw,t) = A(x,t)e?@?) Pulse at position x and time ¢
Az, t), o(x,t) Amplitude and phase of pulse
k=K(w) Dispersion relation

T(w) = K'(w) Transit time

u(x, t) = \/LZ? [ F(w,0) et~ EWe gy General solution for a pulse
F(k,0) = 7= [u(z,0) e7™"dt Spectrum at time zero

F(w,z) = F(k,0) emK@) Sspectrum at position x

Flw,z) = 5= [u(x,t) e™" dt Spectrum at position x

F(w,r) = B(w, z)e?¥@) Spectrum in terms of amplitude and phase
B(w,z), ¥(w, x) Amplitude and phase of spectrum
T=i a% Time operator in w space

(t") = [t" Ju(x, t)]*dt Time Moments of a pulse at =

T = [7(w)|F(k,0)dw Mean transit time

o2 Standard deviation of transit time
Covir|s Covariance of time and transit time at z
Pir|w Correlation coeflicient

To Positions where pulse is contracted
T Position of minimum contraction
wi(z,t) = Zo(z,1) Instantaneous (time) frequency
ki(z,t) = —Zp(z,t) Local spatial frequency
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C Appendix: Moments

In this appendix we give the derivations of the moments of a pulse. As pointed out in the
text the spatial moments of a pulse as a function of time can be calculated directly and

easily from the initial spectrum. In particular we have that in general:

(z") = /:L’" lu(z,t)]* dx (798)
_ / S (k. £) X" S(k, ) dik (799)

where X is the position operator in the k representation

0
X=ig (800)

And again as we pointed out, what makes the calculation easy in the spectral Fourier

domain is that the time dependent spectrum is
S(k,t) = S(k,0) e Wk (801)

First we list here different expressions for the moments that are useful

(x>t:/:):|u(x,t)|2d9: (302)
- / S* (k. 1) S (k, 1) dk (803)
(z2)t:/:)§2 fu(z, £)? da (804)
_ / S*(k, ) XS (k, 1) dk (805)
= / XSk, t)[? dk (806)
ma = [ = () e ) do (307)
= (2%) — ((x)4)° (808)
_ / S (k)X — (2 ))2S (k1) dk (309)
= [16@ = (20t 0 dr (510)
First Moment. We have
(2)e= [ wluw ) do = [ 500 2 S(0,0)d (s11)
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but

XS(k,t) = za%S(k,t) = ( ng(k 0) + tvS(k, 0)) —Wk)t (812)
and therefore
) = / S*(k, 0)XS(k, 0) d + 1 / oIS (k, 02 dik (813)
= (x)o +t/v|S(k,O)|2dk: (814)
= (z)o + t{v)o (815)

Second Moment. For the second moment we do it two different ways. First by way of Eq.
(806) and then directly by way of Eq. (805). We calculate

|XS(k,t)| ( 05 S(k,0) + tvS(k, 0)) S| (816)
( ai (k,0) + twS(k, 0))‘ (817)
= (—Z—S* (k,0) + tvS*(k, )) < ;S(ls 0) + tvS(k, o)) (818)
= |XS(k, 0)[2 + 1202 [S(k, 0)[2 + i t[vS* (k, o>§k5(k,0) —vS(k, )(fksk(k 0)]
(819)
and therefore
xz)t:/|XS(k,O)|2dk+t2/v2|5(k:,0)|2dk
it / [[vS*(k 0) ;kS(k,O)—vS( 0) (fksk( )] dk (820)
=it / {vS*(k: 0) (ka(k 0)+5*(k, 0) ai S(k,O)} (821)
= <:c2>0+t/S*(k,O)[v,X]+S(k,O) dk +t* (v?) (822)
= (2%)o +t{[v, X]; o+ 17 (v?) (823)
where
[v, X]; = 881@' Z%U (824)
=X + Xv (825)
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We now do it the second way, that is by way of Eq. (805),

X2S(k,t) =

, 07
, 2 -

ok?

and therefore we obtain

(22), = (22)0 + it/v (s*(k,%

d

_ [ 5 Sk 0) + it <%S(l€ 0)

S(k,0)k —

+zva—5) + 0?28 (k, 0)] —Wk)

ok

Sk, 0=

dS*(k, 0)

) dk + t*(v?)g

= (%) + it/S*(k:, 0) (vd% + d%v) S(k,0) dk + t*{v*)g

= (22

as before.

Yo+t {[v, X]y o + 12

(v*)

Standard Deviation or Spread. The standard deviation is therefore

(2%)e = ()i = (2% )o + 1" (v

2 _
U:c|t -

or

where

2
x|t

Cov(vr) =

Global k moments. We have
(k>t:/k|5(k,t)\2dk
_ / u (a, H)Ku(e, 1) dz
(k:2>t:/k2|5(k:,t)\2dk
/ (2 DK u(z, 1) da
/ \Ku(z,t)|* dx
o= [[ (= (k) PIS (kO di

= (k%) = ((k)o)*
/ “(, 1)K — (k))?ul, t) da

~ [0~

)+t (v, Xy )o =

= 0925\0 + 2t Cov,, + 12 02

%@X + Xv)o — (v)o()o
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Yu(x,t)]* dx

[{x) +t(v)]"

(826)
(827)

(828)

(829)

(830)

(831)

(832)

(833)

(834)

(835)
(836)
(837)
(838)
(839)

(840)
(841)

(342)

(843)



In the case of wave propagation these moments are constant in time.

Covariance. To calculate the time dependence of the covariance between position and wave

number we first note some general properties of the anticommutator operator when the

variables are z, k. Using the commutator relation
(X, K] =i
we have that
(X, K]l =2KX +i=2XK —i

Also for two arbitrary functions a and b

(X, K]y ab = alX, K] b+ b[X, K] a — ab = 2kX ab + iab

—iW (k

Now applying this to S(k,0)e )t we have that

(X, K]S (k,0) e "t = 2(S,.(k,0) — ivt S(k,0)) e™™W® 4 Sk, 0) e~V R)
= ¢ WhY K], S(k,0) + 2kvtS(k,0) e~ W R

Hence

(o), = <%[2c,/q+> :/%S*(k,o)[X,IC]S(k,O) dk:+t/k:v|5(k:,0))|2dk

or

(zk)e = (xk)o +t{zv)g

(844)

(845)

(846)

(847)

(848)
(849)

(850)

(851)

Thus ( zk ); increases linearly. Using the fact that all wave number averages are independent

of time we have

Covar(t) = (zk ) — (x ) (k)¢
(zh)e = (2)e{k)o
(zk)o 4+t (xv)o = (k)o({z)o +1{v))

or

Covi(t) = Cover(0) + t Covy, (0)

The Covariance

We now consider the covariance between x and k,
Covape = (wk)e — (x )o(k)o
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We have
OY(k,t)

2
ISk, 0 ik

(m%:%%X+k%%:—/k

and
(k)= (xk)o+ (kv)t

Inserting this into Eq. (855) gives
Covkr = Covarjo + t Covy,

where

Covyy = (kv) — (k)(v)

We note that Covy, is independent of time.

Also, one can obtain that
1 1 9
§<’UX—|—X’U>t = §<’UX—|—XU>0 + (ve(k) )t

and hence
Covapr = Covarlo + Uit
Covarpe  Covar(t) = Cover(0) + oot

Pzk|t = -
O |tOk|t o \/U;%\o + 2t Covy, + t202

As before we have that

Pxo|t — 1 as t — 00

(857)

(858)

(859)

(860)

(861)

(862)

(863)

(864)

D Appendix: Marginals of Space-Time Distributions

We give the marginals of the four dimensional distribution given by Eq. (383) [7]. First, for

convenience we repeat the fundamental definition

1 | |
S(k,t) = E /U(,'L', t) e—lkiﬂ dl’ — B(]f, t)eup(k,t)

1 | |
Flw,z) = Wor: /u(a?,t) et dt = B(w, x)e™V@?)
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and also repeat the four different ways one can write the four dimensional distribution

1 1 1 —iTek—iTw
Wiz, k,t,w) <27T) // Tx, — 57’) u(z + iTm,t—F 57’) e drdr, (869)

1 1 1 .
* - - —jOrx—70t
27r) //G k:+26’x,w+ Loyva S0 — 50) ¢ df db, (870)
1
2

2

1 1
% . . —jlgr—jTw
(%) /S (k+ =0,,t— )S(k F0nt = 57)e dgdr  (871)
( 2

1 1 1 1 L
2—) // F*(x — 5T W + 56’)F(z + —Tpyw — 56’) e~ I0=iTk 40 dr,  (872)

There are 4 three dimensional marginals

P(x,k,t) = /C(x, k,t,w)dw (873)
1 Wz — ;Tx,t) u(e + ;Tx,t) eI dr, (874)
/ S*(k + ;Hx,t )S(k — ;9 t) e % dp, (875)
Pz, k,w) = /C(x, k,t,w)dt (876)
= i/ G*(k + Ly )G (k — L ) e~%7 dp (877)
o 2 xs W 9 z, W)€ x
L [ pe X o+ L w)eimha (878)
=5 5T W) E (2 + 57w To
Pz, t,w) = /C(x, k,t,w)dk (879)
* 1 1 —jTw
=5 | u (x,t— 57‘) u(z,t+ 57‘) e ™ dr (880)
217T Fraw+ 9) (2, — %e) e~ g (881)
P(k,t,w) = /C(x, k,t,w)dx (882)
1 * 1 —70t
G*(k,w+ 9) G(k,w — 59)6 1% d (883)
1 1 .
/S* (k, t—— S(k t—iT)e I df (884)
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There are six two dimensional marginals given MUST BE CHECKED
P(t,w):/W(x, k,t,w)dz dk
= % //u*(x,t — %7‘) u(z, t+ %T) e ™ dr dx
P(x, k):/W(:L’, k,t,w) dt dw
= % // u*(z — %Tx,t) u(z + %Tx,t) e~ ™R dr,dt
P(k,t) = /W(a:, k,t,w)dwdk=|S(k,t)|>
P(k,w):/W(:c, kt,w)dtde= |G(k,w) |?
P(t,x):/W(:c, kot w) dw die= | u(z,t) [
P(:E,w):/W(:)s, k.t,w)dtdk= |F(w,x)|?
There are 4 one dimensional marginals
P(t):/W(x, k,t,w) da:dkdw:/m(a:,t) |°da
P(a:):/W(x, k,t,w) dtdwdk:/|u(a:,t) |%dt
P(k) = /W(:c, k,t,w) dw dkdt = / |S(k,t) |* dt

P(w):/W(x, k,t,w) dtdkdt:/ |F(w, ) |* dx

87

(885)
(886)
(887)
(888)
(889)
(890)
(891)

(392)

(393)
(894)
(895)

(896)



Frequency moments. The first conditional moment of frequency is

(W)a kot = /wC(x, k,t,w)dw (897)
/// . ) u( N ) e~ TR dr dr, dw  (898)
27r wu® Tx, 5T)ule + 57, 57)e Tdr, dw
u*(x t—l 7)u( +1 t+1 Ye TR o d (899)
2m 87‘ 2“’ g T T b T =0 AT
11 []0 1 1 R ST S ok
(900)
11 [ 1 0 1 1 0 1
= —%Z -A(LU -+ §Tm,t)az4($ — 57':5, t) — A(LU — iTm,t)aA(x -+ 57}, t)
) 1 1 0 1 1
—iA(z + §Tm,t)A(x Tm, )815 { (x + 57'90, t)+ oz — iTm’t)H
ei(j:(x-i-%m,t)—i(Z:(x—%Tx,t)—lTxk de (901)
Also,
(W)zt = /wC(:E,k,t,w) dwdk (902)
Using Eq. (897) we have that
(W)pr = /wC(:L’, k,t,w) dwdk (903)
1 0 1 1 1 1 ik
= Y« - _ - - itek| 4
5 87’u (x 27‘1,, 27‘)u(:£—|— 27'gc,lf—l— 27’)6 T (904)
1 o . 1 1 1 1
/5(Tx)gu (:)3 QTx,t 5 T)u(z + 2@,t+ 27)|T —odTy, (905)
1
/ ) (.t + 57)lr=0 d7 (906)
which evaluates to 5
(@) = A2, 1) ool 1 (907)
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Conditional Position. The average position is similarly given

() ptw = /xC(x, k,t,w)dx (908)
11 i} 1 0S(k,t+357) 0S*(k,t—357) 1 ire
(909)
11 1 0B(k,t+ 37) 1 0B(k,t—37)
+jB(k,t + 1T)B(k t— 17)3 V(k,t + 17) + ok, t — 17) eVt 3T == 37) =37 g
’ 2 7 2 "0k 7 2 ’ 2
(911)
To obtain the average position for given wave number and time we have
()t = /:L’C’(x, k,t,w)dxdw (912)
1 . 0S(k,t)  0S*(k,t) jrw
=5 (S (k,t) % % S(k,t) )e dr (913)
0
_ R2 il
We now further average to obtain
()= [ B20t) g ) b = (o))
- ok T ok

Covariance. We now calculate the covariance. Consider (kw), ¢

(kw)pr = [ kwC(x,k,t,w)dkdw (915)

/
- / k(W e dk (916)

Op(x,t) 0p(z,t)

— A2

(1) 22D E2 (o17)

The local covariance of frequency and spatial frequency is therefore

Op(x,t) Op(x,t)  Op(x,t)  Op(x,t)
_ A2 _ ) _ )
Covy i (kw) = A*(x, 1) ( T pe Y P (918)
and the global covariance is hence
Op(x,t) Op(z,t)  Op(x,t)  dp(x,t)
_ 2 _ ) N )

Cov(kw) = //A (z,1) ( 5 e 5 pe dx dt (919)
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As discussed previously, we can think of % and % as the frequency and spatial

frequency in the z,t representation. Using this idea for example we can immediately write

Op(z,1)
_ A2 )
(k)pr = A%(x, 1) o (920)
In the spectral domain we have
<xt>k,w — BQ(I{?, w) a¢(k7 w) 8¢(k7 w) (921)

ok Oow

and again one can think of x,t as WW.

E Appendix: Asymptotics for pulse propagation

In the text we have given formulas for the instantaneous frequency where we have based our
approach on the classical asymptotic approximation. We repeat here the classical asymptotic

result. The pulse is given by (exactly)

u(z,t) = \/%_W / S(k,0) eFe=WHt g, (922)

where S(k,0) is the initial spatial spectrum and it is calculated from the initial pulse. The

asymptotic solution as standardly given is

1

ua(x, t) ~ S(l{is, O) tW”(ks) eiksx—iW(ks)t—iwsgn w' /4 (923)
where k, is obtained from
W (ky) = % (924)

In deriving the formulas for instantaneous frequency we wrote

. 1 . . . ”
ip(k,0 iksx—iW (ks)t—imsgn W' /4
ug(z,t) ~ B(k,0)e®0) RIEIae (ks)t—imsgn W/ (925)

where B(k,0) and ¢ (k,0) are the initial amplitude and phase of the spectrum. The asymp-

totic amplitude and phase of the pulse are therefore

Au(2,1) = S (K, 0) ﬁ (926)

pa(@,t) = P(ks, 0) + ksz — W (k;)t — msgn W" /4 (927)
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and we obtained our formulas for instantaneous frequency by differentiating asymptotic

phase appropriately. We repeat those results here

0 d
0 1 dy(k,0
ki(x,t) = %<p(x,t) = e wék ) + ks (929)

We now show that a different approach is more appropriate and gives considerable better
answer. This has recently been done with P. Loughlin [14]. Our approach consists of
two steps. First we derive a more suitable asymptotic approximation then the classical
one. Secondly, using this new asymptotic approximation we calculate the Instantaneous
frequency.

To derive the new aproximation we take the initial spectral phase into account in deriving

the asymptotic formula. We write
1 . ,
u(z,t) = — [ B(k,0) W EHwE0 gp, 930
(@.t) = —= [ B(k0) (930)

tke—iW (k)t+1(k.0) i5 rapidly oscillating and

In the stationary phase method one assumes that e
the amplitude is relatively slowly varying. Hence, for most regions of integration there will
be cancellations. However if there is a region where the phase is not oscillating then that
region will contribute the greatest part to the integral. That region is where the derivative

of the phase is zero

%[m W k)t + (k,0)] = 0 (931)
This gives
v — W)+ 0/ (k,0) = 0 (932)
or equivalently,
W (k) = w (933)

One solves this equation for k£ and writes the solution as ks;. Notice now that k, is no longer
a function of z/t as would be the case if we did not take into account the phase of the initial

spectrum. Since we assume that the amplitude is slowly varying we have

1
~ ——B
2T

The phase is now expanded in a series about the stationary point k; and one keeps terms

ua(x,t) (k’s,O)/ ez’kx—z’W(k)t-‘:—iw(k,O) dk (934)
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only up to the quadratic one. In particular

kit — W)+ (k, 0) ~ ks — W ko)t + t(ks, 0) 4+ [2 — W (ko )t + 0 (s, 0)] (k — ky) (935)
bW (R )t + 07 O]k — k)? (936)

= = W)+ (ke 0) + 5[ (k)6 (i O] = )2
(937)

and therefore

i) ~ =B, 0) [ expilhr =Wkt +005.0) + 51 ()t + 4, Ok = k)? ] d

(938)

— Ls(/{s, 0)e!thse=W(ks)l / expi[%{—W"(ks)t + " (ks, )} (k — ko)*]dk (939)

2T
/ejat2/2dt _ 27.T — 2_7T€j7rua/4 (940)
V —ja |al

Using,

where p, is the sign of a

fta = sgn(a) (941)
we have
(1) ~ \/%_WS(ks,O)e”ksx‘W(’“S)t] / expz'[%{—w"(ks)t+¢"(k:s,0)}(k—ks)ﬂdk (942)
1 oo —iW (k) t—imsgn [W/'t—" (ks,0)]/4
~ 1RsT—1 s 17TSgN Sy 4
S(kS’O)\/tW”(ks) _w//(ks’o)e (9 3)

Note the following. From a functional point of view there appears to be only a difference
in the amplitude and not the phase when one compares Eq.(943 with Eq. (925). However
it must be emphasized that there is a difference as to the value of the stationary points.
Namely, for this case we must solve Eq. ( 933) rather than Eq. (924) for k.

Instantaneous frequency. We now obtain the instantaneous frequency. The phase is

Qpa($? t) = ’QD(/{?S, 0) + ks$ - W(ks)t — TTSgn [W”t - w”(ksa O)]/4 (944)
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Differentiating the phase, p,(x,t), we have

wi(z,t) = —%apa(:c, t) (945)
B [ dv Ok, Ok, dW (ks) Ok
- — _d—k’s ot +x o — dk’s o :| + W(k‘s) (946)
B [ dy) dW (ks)| Oks
= |, +a—t dk. ] 5 T W (ks) (947)
L [ dv) B x+ ' (k,0) Ok,
= |k +x—1 (775 BT + Wi(ks) (948)
But since (k.0
W'(k) = M (949)

t
the first term is identically zero and hence

wilz, 1) = W(ky) (950)
Also,
k(1) = 2l t) (951)
7 ZIZ', - aISOCL $a
Ay Ok, Ok, AW (k,) Ok,
ki or Tor TR e (952)
[dy AW (ks)] Ok,
_ {dks bt } ek, (953)
C[de [+ (k0)\] Ok
- {dks . t( i r s (954)
and therefore
ki, 1) = k, (955)

Example.  We now take an example to illustrate the differences. We shall do it three
different ways, exact, using the classical asymptotic approach, and the modified asymptotic

approach discussed above. At t = 0 we take

u(z,0) = 7/ (956)

S(k,0) = \/% exp [—Z%} (957)

For the dispersion relation we take

and the initial spectrum is

W (k) = vk*/2 (958)
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Ezact. The time dependent spectrum is

S(k,t) = \/% exp [-i% - iW(k:)t]
/ S(k,t)e”

11 kP
V2B exp{_zﬁ_ 2

giving

u(z,t) =

5~
3

L [QL}
VA A RO R WY

The exact phase is therefore

and the exact instantaneous frequency is

0 3222
i(2,0) = —p(r,t) =y
wilz,t) = =5 0(x,1) Y30+ e
and the exact spatial instantaneous frequency is
Bx
14+ ~pt

Standard asymptotic method. The stationary points are obtained from

0
ki(z,t) = aap(az,t) =

W'(k) = vk = %
and hence,
hy = —
vt
giving
2
x
Wi(ks) = —
(ks) 27t?
2
kot — W ko)t = —
27t
Therefore,
1 ) ! ; "
ua(x7 t) ~ S(ksa O) tW//(k )62k5x_ZW(ks)t—2wsgnK /4

1 o2 L x2
= — X — Nl 11—
6t P T gz T oy
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(959)

(960)
(961)

(962)

(963)

(964)

(965)

(966)

(967)

(968)

(969)

(970)

(971)



The phase is

x? x?
o(@,t) = =52 + o
o) = —55mm + o
and differentiating we obtain
x? x?
(@, t) = == + 5
wi(x,t) e + o2
x x
ki at = - N
) e o
As a check we also calculate the instantaneous frequencies by
d
o) = S W)

2W (k,) dk,

But
dy  k  x

dk, B Pyt

and therefore

r T x?

—_— _'_ [
vyt 21

x? x?

e T e

wi(z,t) =

Also,

1 d

W (k) dks
Xz X

R

+ks

As can be seen these are approximations to the exact answers.

Modified Asymptotic method. We have to solve

/
That is,
ks’}/ frd 7'% _ ks/ﬁ
t
and therefore
_ Pz
S 14 st

(972)

(973)

(974)

(975)

(976)

(977)

(978)

(979)

(980)

(981)

(982)

(Notice that this happens to be the exact instantaneous spatial frequency, but we do not

take that into account.)
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First, we calculate W (k;) and ksz — W (ks)t. In particular

W (k,) = 7k2/2 (983)
v({ Bz \
__p
=21+ 50 )
and also
Pz VG2 a?
ksx — W (kg)t = 1+75tx_ 2(1_‘_7&) (986)
_ pa? vt
“ i (0 a) 57
ﬁ 2
(1 B0 (1 +76t/2) (988)
Therefore
(@, 1) ~ S(k:S,O)\/ T 1 i 0)eiksm—iW(ks)t—iwsgn[W”t—w”(ks,o)}/4 _ (989)

_ i Lo { k2] 1 ihea—iW (ka)t—imsgn W=y (k. 0)1/4 (gg()
W7 (k) — 07 (ks 0)
/ e 1 pr )
\/7 ty + 1/6 (1 + vGt)? 7 (1 768/2) - 25 <1 + ’Yﬂt> | 90
- 2 1 2_
~V3\rrmer iuf%“ =i (mm) |

_. a2
\f‘/tvﬂ/ﬁ Kemrne (1+vﬁt/2—1/2)] (993)
/ Ba?

1+t7ﬁ pl (1+vﬂt)} (994)

But this is the exact answer and hence will give the exact instantaneous frequencies. To

verify we use

2,.2
i, 1) = W (k,) = % (995)
and 5
kil ) =k, = < +9; 5 (996)

and indeed these are exact. We therefore see that the approximation we have presented

here is more accurate than the standard asymptotic one.
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Case B

We write the corresponding equations for case B. The general solution is

u(x,t) ™! dw (997)

= 7 e

Flw,z) = % / w(z, £) e~ dt (998)

F(w,z) = F(w,0) e W2 (999)

with

and where F(w,0) is the spectrum evaluated at = = 0,

F(w,0) et dt (1000)

:\/%/U(Ot)

The standard asymptotic solution is

1 iwt—iK (w)z—imsgn K"
ua(t.1) ~ F(w,0)) | et s (1001)
where one obtains w, from
K'(ws) =t/x (1002)
The amplitude and phase are
1
ua(z,t)| = [F(w,0)] ) (1003)
a2, t) = Y(w,0) — K(w)z + wt — 7sgn K" /4 (1004)
and the instantaneous frequencies are
1 oy
i(x,t 1
wi(x,t) = K )8w+w (1005)
t dy
ki(x,t) = ———+— K(wy 1
(x,t) TR )dws + K (ws) (1006)

We no obtain the new formulas. Using the same approach as before we now have write

(x t Zwt—’iK(W)x"l'iw(w?O) dw (1007)

= 7 o

and the region where the derivative of the phase is zero is obtained from

0

oWt = K@)z +(w,0)] =0 (1008)
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which gives

t— K'(w)z + ¢ (w,0) =0 (1009)
K'(w) = zj;%£?£L92 (1010)

Taking the amplitude out of the integral we have

1 . .
Ug(t, ) ~ EB(%,O) / giwtmtK @t g, (1011)

Expanding the phase about the stationary point ws; and keeping terms only up to the

quadratic one we have
1
wt— K(w)x+19(w,0) ~ wst — K (ws)x+1(ws, 0) + 3 [~ K" (we)x 41" (ws, 0)](w —w,)?* (1012)

and therefore

1 1
uq(t, r) ~ ——=B(ws, 0) / expifwst — K(ws)z + ¥(ws, 0) + = [ K" (ws)x + ¥ (ws, 0)](w — w)? ] dw
V2r 2
(1013)
B #5 (cy, 0)eftert =1L / exp il (K" (w2} + " (s, 0)} (0 — )] doo =
(1014)
or,
1 iwst—iK (ws)z—imsgn [K" z—1" (ws,0)] /4
Uq(t, ) S(ws’())\/xK”(ws) — w”(ws,O)e (1015)
The phase is
a(t, z) = P(ws, 0) + wt — K (ws)x — wsgn [K"z — 4" (ws, 0)] /4 (1016)
Differentiating the phase, ¢,(t ,z ), we have
ki(t,z) = _9 (t,x) (1017)
(ANS] - ax(pa ’
[ dyp Ows Owg dK (ws) Ows
N | dws Oz i ox o dw, 8:1:] + K (w) (1018)
[y dK (ws)] Ows
= — o +t—=x . } e + K (ws) (1019)
[ d t+ ¢ (w,0)\] Ows
= | +t—u ( . e + K (ws) (1020)
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However

and hence

Also,

which gives

K'(w)

_t+1(w,0)
a xXr

ki(t,x) = K(ws)

0
wi(t,z) = a%z(t, x)

_dy Owy N taws b dK (ws) Ows

T dw, ot ot YT o
[y dK (ws) | Ows
—[d—ws“—fc do, } or s
[dy t+ ¢ (w,0)\ ]| Ows
—{dws—l—t x( - 5 + ws

wi(t> [L’) = Ws

99

(1021)

(1022)

(1023)

(1024)
(1025)

(1026)

(1027)





